Lecture 2: constructive 3-layer, non-constructive 2-layer apx

1. Basic approximation results (continued)

Here’s our three layer approximation theorem.

[We stated this last class, sketched a picture proof.]

Theorem. Let \(\text{cont} f \) and \(\delta > 0 \) and ReLU \(\sigma \) be given, There exists \(g(x) := W_3 \sigma(W_2 \sigma(W_1 x + b_1)) \) of width \(\mathcal{O}(d/\delta^s) \) with \(\| f - g \|_1 = \int_{[0,1]^d} |f(x) - g(x)| \, dx \leq 2\omega_f(\delta) \).

Remarks.

- The curse of dimension (exponential in \(d \)) is there again.
- The metric has been relaxed to \(L_1 \); the same proof can do \(\| \cdot \|_u \), but it takes a lot of care, and we’ll have better constructions anyway.
- The construction will have an unbounded Lipschitz constant. It seems unlikely gradient descent can learn such representations.

Proof (continued). Let’s do what we did in the univariate case, putting nodes where the function value changes. For each \(R_i := \times_{j=1}^d [a_j, b_j] \), pick \(\gamma > 0 \)

\[
g_{\gamma,j}(x) = \sigma \left(\frac{z - (a_j - \gamma)}{\gamma} \right) - \sigma \left(\frac{z - a_j}{\gamma} \right) - \sigma \left(\frac{z - b_j}{\gamma} \right) + \sigma \left(\frac{z - (b_j + \gamma)}{\gamma} \right)
\]

and \(g_\gamma(x) = \sigma(\sum_j g_{\gamma,j}(x_j) - (d - 1)) \) (adding the additional ReLU layer is the key step!), whereby

\[
g_\gamma(x) = \begin{cases} 1 & x \in R_i, \\ 0 & x \not\in \times_j[a_j - \gamma, b_j + \gamma], \\ [0,1] & \text{otherwise}. \end{cases}
\]

Since \(g_\gamma \to \mathbb{1}_{R_i} \) pointwise, there exists \(\gamma \) with \(\| g_\gamma - \mathbb{1}_{R_i} \|_1 \leq \frac{\omega_f(\delta)}{\sum_j |a_j|} \).
2. Non-constructive approximation with 2 layers
The previous section developed g_γ such that

$$g_\gamma(x) \approx \mathbb{1}_{x \in \times_i [a_i, b_i]}.$$ If deep networks could multiply, we could do

$$x \mapsto \prod_i \mathbb{1}_{x_i \in [a_i, b_i]}.$$ Who thinks deep networks can multiply?

Multiplication with shallow networks

Let's introduce some notation:

$$H_{\sigma,d} := H_{\sigma} := \left\{ x \mapsto \sigma(a^T x + b) : (a,b) \in \mathbb{R}^{d+1} \right\},$$

$$\text{span}(\mathcal{F}) := \left\{ x \mapsto \sum_{i=1}^N \alpha_i f_i(x) : N \in \mathbb{Z}_{\geq 0}, \alpha_i \in \mathbb{R}, f_i \in \mathcal{F} \right\}.$$ Let's consider H_{\cos}. Since

$$2 \cos(y) \cos(z) = \cos(x + y) + \cos(x - y),$$

$$\cos(a^T x + b) \cos(r^T x + s) = \frac{1}{2} \left(\cos((a + r)^T x + (b + s)) + \cos((a - r)^T x + (b - s)) \right),$$

Therefore $\text{span}(H_{\cos})$ is closed under products!

Remark. $\text{span}(H_{\sigma})$ denotes single hidden layer networks; second bias unneeded since H_{σ} includes constant functions.

H_{\cos} is closed under multiplication

Note that this gives us "bumps" via

$$x \mapsto \prod_{i=1}^d \cos(x_i),$$

and we can linearly combine bumps to get continuous functions.

Where does this leave us?

- **Polynomials** are also closed under addition and multiplication, and they are universal approximators (Weierstrass 1885).

- An extended version, the "Stone-Weierstrass theorem", says "polynomial-like" classes of functions are also universal approximators.

- These "polynomial-like" properties are satisfied by $\text{span}(H_{\cos}).$

- Since \cos can be approximated by $\text{span}(H_{\sigma,1})$, we also have $\text{span}(H_{\sigma}) \approx \text{span}(H_{\cos}) \approx \text{cont}.$

Stone-Weierstrass theorem

Any class of functions that has multiplication behaves like polynomials, and has nice interpolation properties.

Theorem (Stone-Weierstrass; (Folland 1999, Theorem 4.45)). Let functions \mathcal{F} be given as follows.

1. Each $f \in \mathcal{F}$ is continuous.
2. For every x, there exists $f \in \mathcal{F}$ with $f(x) \neq 0$.
3. \mathcal{F} separates points, meaning for every $x \neq x'$ there exists $f \in \mathcal{F}$ with $f(x) \neq f(x').$
4. \mathcal{F} is closed under multiplication and vector space operations (\mathcal{F} is an algebra).

Then for every continuous $g : \mathbb{R}^d \to \mathbb{R}$ and $\epsilon > 0$, there exists $f \in \mathcal{F}$ with $\|f - g\|_u \leq \epsilon$. ($\mathcal{F}$ is universal.)
Remarks on Stone-Weierstrass.

- It is heavyweight, but a good tool to have.
- Proofs are not constructive, but seem to require size $O(1/\epsilon^u)$.
- Proofs are interesting:
 - We will revisit the standard one due to Bernstein, which picks a fine grid and interpolating polynomials that are well-behaved off the grid.
 - Weierstrass's original proof convolved the target with a Gaussian, which makes it analytic, and also leads to good polynomial approximation.
- As a technical point, we could also approximately satisfy the properties, and apply the theorem to the closure of \mathcal{F}.
- The second and third conditions are necessary; if there exists x so that $f(x) \neq 0 \forall f \in \mathcal{F}$, then we can't approximate g with $g(x) = 0$; if we can't separate points $x \neq x'$, then we can't approximate functions with $g(x) \neq g(x')$.

Universal approximation via Stone-Weierstrass.

Lemma (Hornik, Stinchcombe, and White 1989). $\text{span}(\mathcal{H}_{\cos})$ is universal.

Proof. Let's check the Stone-Weierstrass conditions:

1. Each $f \in \text{span}(\mathcal{H}_{\cos})$ is continuous.
2. For each x, $\cos(0^T x) = 1 \neq 0$.
3. For each $x \neq x'$, $f(z) := ((z - x')^T (x - x')/\|x - x'\|^2) \in \mathcal{H}_{\cos}$ satisfies $f(x) = \cos(1) \neq \cos(0) = f(x')$.
4. $\text{span}(\mathcal{H}_{\cos})$ is closed under products and VS ops as before.

Arbitrary activations

Theorem (Hornik, Stinchcombe, and White 1989). Suppose $\sigma : \mathbb{R} \to \mathbb{R}$ is continuous, and

$$\lim_{z \to -\infty} \sigma(z) = 0, \quad \lim_{z \to +\infty} \sigma(z) = 1.$$

Then $\text{span}(\mathcal{H}_{\sigma})$ is universal.

Proof. Given a continuous function g, pick $f \in \text{span}(\mathcal{H}_{\cos})$ (or $\text{span}(\mathcal{H}_{\exp})$) with $\|f - g\|_u \leq \epsilon/2$. Then use the earlier univariate approximation results to replace each cos (or exp) with elements of $\text{span}(\mathcal{H}_{\sigma})$. (Details will be in homework.)

Remarks.

- ReLU is fine: use $z \mapsto \sigma(z) - \sigma(z - 1)$ and split nodes.
- exp didn't need bias, but ReLU apx of exp needs bias.
- Weakest conditions on σ (Leshno et al. 1993): universal apx iff not a polynomial
- Never forget: curse of dimension (size $O(1/\epsilon^n)$).

If you don’t like \cos...

Lemma (Hornik, Stinchcombe, and White 1989). $\text{span}(\mathcal{H}_{\exp})$ is universal.

Proof. Let’s check the Stone-Weierstrass conditions:

1. Each $f \in \text{span}(\mathcal{H}_{\exp})$ is continuous.
2. For each x, $\exp(0^T x) = 1 \neq 0$.
3. For each $x \neq x'$,

$$f(z) := \exp((z - x')^T (x - x')/\|x - x'\|^2) \in \mathcal{H}_{\exp} \text{ satisfies } f(x) = \exp(1) \neq \exp(0) = f(x').$$
4. $\text{span}(\mathcal{H}_{\cos})$ is closed under VS ops by construction; for products,

$$\left(\sum_{i=1}^n r_i \exp(a_i^T x)\right) \left(\sum_{j=1}^m s_j \exp(b_j^T x)\right) = \sum_{i=1}^n \sum_{j=1}^m r_is_j \exp((a + b)^T x).$$

Remark. Biases? $x \mapsto \exp(a^T x + b) = e^b \cdot \exp(a^T x)$.

$$\text{span}(\mathcal{H}_{\exp})$$
Other universal approximation proofs

▶ (Cybenko 1989) Assume contradictorily you miss some functions. By duality, \(0 = \int \sigma(a^T x - b) \, d\mu(x) \) for some signed measure \(\mu \), all \((a, b)\). Using Fourier, can show this implies \(\mu = 0 \ldots \)

▶ (Leshno et al. 1993) If \(\sigma \) a polynomial, \ldots; else can (roughly) get derivatives and polynomials of all orders (we'll have homework problems on this).

▶ (Barron 1993) Use inverse Fourier representation to construct an infinite-width network; we'll cover this in class. It can beat the worst-case curse of dimension!

▶ (Funahashi 1989) I'm sorry, I haven't read it. Also uses Fourier.

References I

References II

http://dblp.uni-trier.de/db/journals/nn/nn6.html#LeshnoLPS93.