Logistic regression
1. Linear classifiers
Last two lectures, we studied linear regression; the output/label space \mathcal{Y} was \mathbb{R}.
Today, the goal is a **linear classifier**, the output/label space \mathcal{Y} is discrete.
For now, let’s consider binary classification: $\mathcal{Y} = \{-1, +1\}$. A linear predictor $\mathbf{w} \in \mathbb{R}^d$ classifies according to $\text{sign}(\mathbf{w}^T \mathbf{x}) \in \{-1, +1\}$.

Given $((\mathbf{x}_i, y_i))_{i=1}^n$, a predictor $\mathbf{w} \in \mathbb{R}^d$, we want $\text{sign}(\mathbf{w}^T \mathbf{x}_i)$ and y_i to agree.
Geometry of linear classifiers

A hyperplane in \mathbb{R}^d is a linear subspace of dimension $d-1$.

- A hyperplane in \mathbb{R}^2 is a line.
- A hyperplane in \mathbb{R}^3 is a plane.
- As a linear subspace, a hyperplane always contains the origin.

A hyperplane H can be specified by a (non-zero) normal vector $\mathbf{w} \in \mathbb{R}^d$.

The hyperplane with normal vector \mathbf{w} is the set of points orthogonal to \mathbf{w}:

$$H = \left\{ \mathbf{x} \in \mathbb{R}^d : \mathbf{x}^\top \mathbf{w} = 0 \right\}.$$

Given \mathbf{w} and its corresponding H, H splits the sets labeled positive $\{ \mathbf{x} : \mathbf{w}^\top \mathbf{x} > 0 \}$ and those labeled negative $\{ \mathbf{x} : \mathbf{w}^\top \mathbf{w} < 0 \}$.

\begin{figure}[h]
 \centering
 \begin{tikzpicture}[scale=1.5]
 \draw[->] (-1.5,0) -- (1.5,0) node[anchor=north west] {x_1};
 \draw[->] (0,-1.5) -- (0,1.5) node[anchor=south east] {x_2};
 \draw[thick, dashed] (-1.5,0) -- (1.5,0);
 \draw[thick, dashed] (0,-1.5) -- (0,1.5);
 \draw[green, thick] (-1,1) -- (1,-1);
 \draw[blue, thick] (-1,-1) -- (1,1);
 \draw[->, green] (-1,1) -- (-1,-1) node[above] {H};
 \draw[->, blue] (-1,1) -- (1,1) node[below] {\mathbf{w}};
 \end{tikzpicture}
\end{figure}
Classification with a hyperplane

Projection of x onto $\text{span}\{w\}$ (a line) has coordinate $\|x\|_2 \cdot \cos(\theta)$ where $\cos(\theta) = \frac{x^T w}{\|w\|_2 \|x\|_2}$.

(Distance to hyperplane is $\|x\|_2 \cdot |\cos(\theta)|$.)

Decision boundary is hyperplane (oriented by w):

$x^T w > 0 \iff \|x\|_2 \cdot \cos(\theta) > 0 \iff x$ on same side of H as w.

What should we do if we want hyperplane decision boundary that doesn’t (necessarily) go through origin?
Classification with a hyperplane

Projection of x onto $\text{span}\{w\}$ (a line) has coordinate

$$\|x\|_2 \cdot \cos(\theta)$$

where

$$\cos(\theta) = \frac{x^\top w}{\|w\|_2 \|x\|_2}.$$

(Distance to hyperplane is $\|x\|_2 \cdot |\cos(\theta)|$.)
Classification with a hyperplane

Projection of \mathbf{x} onto $\text{span}\{\mathbf{w}\}$ (a line) has coordinate

$$\|\mathbf{x}\|_2 \cdot \cos(\theta)$$

where

$$\cos(\theta) = \frac{\mathbf{x}^\top \mathbf{w}}{\|\mathbf{w}\|_2 \|\mathbf{x}\|_2}.$$

(Distance to hyperplane is $\|\mathbf{x}\|_2 \cdot |\cos(\theta)|$.)

Decision boundary is hyperplane (oriented by \mathbf{w}):

$$\mathbf{x}^\top \mathbf{w} > 0 \iff \|\mathbf{x}\|_2 \cdot \cos(\theta) > 0 \iff \mathbf{x} \text{ on same side of } H \text{ as } \mathbf{w}$$
Classification with a hyperplane

Projection of x onto $\text{span}\{w\}$ (a line) has coordinate

$$\|x\|_2 \cdot \cos(\theta)$$

where

$$\cos(\theta) = \frac{x^T w}{\|w\|_2 \|x\|_2}.$$

(Distance to hyperplane is $\|x\|_2 \cdot |\cos(\theta)|$.)

Decision boundary is hyperplane (oriented by w):

$$x^T w > 0 \iff \|x\|_2 \cdot \cos(\theta) > 0 \iff x \text{ on same side of } H \text{ as } w$$

What should we do if we want hyperplane decision boundary that doesn’t (necessarily) go through origin?
Linear separability

Is it always possible to find \mathbf{w} with $\text{sign}(\mathbf{w}^T \mathbf{x}_i) = y_i$? Is it always possible to find a hyperplane separating the data? (Appending 1 means it need not go through the origin.)

Linearly separable. Not linearly separable.
Decision boundary with quadratic feature expansion

elliptical decision boundary

hyperbolic decision boundary
Same *feature expansions* we saw for linear regression models can also be used here to “upgrade” linear classifiers.
Why not feed our goal into an optimization package, in the form

$$\arg\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} 1[\text{sign}(\mathbf{w}^T \mathbf{x}_i) \neq y_i]$$
Why not feed our goal into an optimization package, in the form

\[
\arg \min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} 1[\text{sign}(\mathbf{w}^T \mathbf{x}_i) \neq y_i]
\]

- Discrete/combinatorial search; often NP-hard.
Relaxing the ERM problem

Let’s remove one source of discreteness:

\[\frac{1}{n} \sum_{i=1}^{n} 1[\text{sign}(\mathbf{w}^\top x_i) \neq y_i] \rightarrow \frac{1}{n} \sum_{i=1}^{n} 1[y_i(\mathbf{w}^\top x_i) \leq 0] . \]

Did we lose something in this process? Should it be “>” or “≥”?

... (Remainder of lecture will use single-parameter margin losses.)
Let’s remove one source of discreteness:

$$\frac{1}{n} \sum_{i=1}^{n} 1[\text{sign}(w^T x_i) \neq y_i] \quad \rightarrow \quad \frac{1}{n} \sum_{i=1}^{n} 1 \left[y_i(w^T x_i) \leq 0 \right].$$

Did we lose something in this process? Should it be “>” or “≥”?

$y_i(w^T x_i)$ is the (unnormalized) margin of w on example i; we have written this problem with a margin loss:

$$\hat{R}_{zo}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell_{zo}(y_iw^T x_i) \quad \text{where} \quad \ell_{zo}(z) = 1[z \leq 0].$$

(remainder of lecture will use single-parameter margin losses.)
2. Logistic loss and risk
Logistic loss

Let’s state our classification goal with a generic margin loss ℓ:

$$
\hat{R}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i w^T x_i);
$$

the key properties we want:

- ℓ is continuous;
- $\ell(z) \geq c \mathbb{1}[z \leq 0] = c \ell_{zo}(z)$ for some $c > 0$ and any $z \in \mathbb{R}$, which implies $\hat{R}_\ell(w) \geq c \hat{R}_{zo}(w)$.
- $\ell'(0) < 0$ (pushes stuff from wrong to right).
Logistic loss

Let’s state our classification goal with a generic margin loss ℓ

$$\hat{R}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i w^T x_i);$$

the key properties we want:

- ℓ is continuous;
- $\ell(z) \geq c\mathbb{1}[z \leq 0] = c\ell_{zo}(z)$ for some $c > 0$ and any $z \in \mathbb{R}$, which implies $\hat{R}_\ell(w) \geq c\hat{R}_{zo}(w)$.
- $\ell'(0) < 0$ (pushes stuff from wrong to right).

Examples.

- **Squared loss**, written in margin form: $\ell_{ls}(z) := (1 - z)^2$;
 note $\ell_{ls}(y\hat{y}) = (1 - y\hat{y})^2 = y^2(1 - y\hat{y})^2 = (y - \hat{y})^2$.
- **Logistic loss**: $\ell_{log}(z) = \ln(1 + \exp(-z))$.

Squared and logistic losses on linearly separable data I

Logistic loss. Squared loss.
Squared and logistic losses on linearly separable data II

Logistic loss.
Squared loss.
Logistic risk and separation

If there exists a perfect linear separator, empirical logistic risk minimization should find it.

Theorem.
Logistic risk and separation

If there exists a perfect linear separator, empirical logistic risk minimization should find it.

Theorem. If there exists \bar{w} with $y_i \bar{w}^T x_i > 0$ for all i, then every w with $\hat{R}_\log(w) < \frac{\ln(2)}{2n} + \inf_v \hat{R}_\log(v)$, also satisfies $y_i w^T x_i > 0$.
Logistic risk and separation

If there exists a perfect linear separator, empirical logistic risk minimization should find it.

Theorem. If there exists \(\bar{w} \) with \(y_i \bar{w}^T x_i > 0 \) for all \(i \), then every \(w \) with \(\hat{\mathcal{R}}_{\log}(w) < \frac{\ln(2)}{2n} + \inf_v \hat{\mathcal{R}}_{\log}(v) \), also satisfies \(y_i w^T x_i > 0 \).

Proof.

Step 1: low risk implies few mistakes. For any \(w \) with \(y_j w^T x_j \leq 0 \) for some \(j \),

\[
\hat{\mathcal{R}}_{\log}(w) \geq \frac{1}{n} \ln(1 + \exp(-y_j w^T x_j)) \geq \frac{\ln(2)}{n}.
\]

By contrapositive, any \(w \) with \(\hat{\mathcal{R}}_{\log}(w) < \frac{\ln(2)}{n} \) makes no mistakes.

Step 2: \(\inf_v \hat{\mathcal{R}}_{\log}(v) = 0 \). Note:

\[
0 \leq \inf_v \hat{\mathcal{R}}_{\log}(v) \leq \inf_{r > 0} \frac{1}{n} \sum_{i=1}^{n} \ln(1 + \exp(-r y_i \bar{w}^T x_i)) = 0.
\]

This completes the proof.
3. Minimizing the empirical logistic risk
Least squares:

- Take gradient of $\|Aw - b\|^2$, set to 0; obtain normal equations $A^TAw = A^Tb$.
- One choice is minimum norm solution A^+b.

Logistic loss:

- Take gradient of $\hat{R}(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + \exp(y_iw^Tx_i))$ and set to 0 ???
Least squares:

- Take gradient of \(\|Aw - b\|^2 \), set to 0; obtain normal equations \(A^T Aw = A^T b \).
- One choice is minimum norm solution \(A^+ b \).

Logistic loss:

- Take gradient of \(\hat{R}_{log}(w) = \frac{1}{n} \sum_{i=1}^{n} \ln(1 + \exp(y_i w^T x_i)) \) and set to 0.
Least squares and logistic ERM

Least squares:

- Take gradient of $\|A\omega - b\|^2$, set to 0; obtain normal equations $A^TA\omega = A^Tb$.
- One choice is minimum norm solution A^+b.

Logistic loss:

- Take gradient of $\hat{R}_{\log}(\omega) = \frac{1}{n}\sum_{i=1}^{n} \ln(1 + \exp(y_i\omega^T x_i))$ and set to 0 ???

Remark. Is A^+b a “closed form expression”?
Decreasing \hat{R}

We need to move down the contours of \hat{R}_{log}:

![Graph showing decreasing contours of \hat{R}_{log}]
Gradient descent

Given a function \(F : \mathbb{R}^d \rightarrow \mathbb{R} \), gradient descent is the iteration

\[
\mathbf{w}_{i+1} := \mathbf{w}_i - \eta_i \nabla_{\mathbf{w}} F(\mathbf{w}_i),
\]

where \(\mathbf{w}_0 \) is given, and \(\eta_i \) is a learning rate / step size.
Gradient descent

Given a function $F : \mathbb{R}^d \rightarrow \mathbb{R}$, gradient descent is the iteration

$$w_{i+1} := w_i - \eta_i \nabla_w F(w_i),$$

where w_0 is given, and η_i is a learning rate / step size.

Does this work for least squares?
Gradient descent

Given a function $F : \mathbb{R}^d \rightarrow \mathbb{R}$, gradient descent is the iteration

$$\mathbf{w}_{i+1} := \mathbf{w}_i - \eta_i \nabla \mathbf{w} F(\mathbf{w}_i),$$

where \mathbf{w}_0 is given, and η_i is a learning rate / step size.

Does this work for least squares? Later we’ll show it works for least squares and logistic regression due to convexity.
Gradient descent for logistic regression

Gradient descent is the iteration: \(w_{i+1} := w_i - \eta_i \nabla w \hat{R}_\log(w_i). \)

- Note \(\ell'_\log(z) = \frac{-1}{1+\exp(z)}, \) and use the chain rule (hw1!).
- Or use pytorch:

```python
def GD(X, y, loss, step = 0.1, n_iters = 10000):
    w = torch.zeros(X.shape[1], requires_grad = True)
    for i in range(n_iters):
        l = loss(X, y, w).mean()
        l.backward()

        with torch.no_grad():
            w -= step * w.grad
            w.grad.zero_()

    return w
```

```bash
17 / 68
```
The (negative) derivative $-\ell'_{\text{log}}(z) = \frac{1}{1+e^z}$ is the logistic function.

We’ll explain its significance in subsequent lectures.
4. Summary
What data science methods are used at work?

Logistic regression is the most commonly reported data science method used at work for all industries except **Military and Security** where Neural Networks are used slightly more frequently.

<table>
<thead>
<tr>
<th>Method</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic Regression</td>
<td>63.5%</td>
</tr>
<tr>
<td>Decision Trees</td>
<td>49.9%</td>
</tr>
<tr>
<td>Random Forests</td>
<td>46.3%</td>
</tr>
<tr>
<td>Neural Networks</td>
<td>37.6%</td>
</tr>
<tr>
<td>Bayesian Techniques</td>
<td>30.6%</td>
</tr>
<tr>
<td>Ensemble Methods</td>
<td>28.5%</td>
</tr>
<tr>
<td>SVMs</td>
<td>26.7%</td>
</tr>
<tr>
<td>Gradient Boosted Machines</td>
<td>23.9%</td>
</tr>
<tr>
<td>CNNs</td>
<td>18.9%</td>
</tr>
<tr>
<td>RNNs</td>
<td>12.3%</td>
</tr>
<tr>
<td>Other</td>
<td>8.3%</td>
</tr>
<tr>
<td>Evolutionary Approaches</td>
<td>5.5%</td>
</tr>
<tr>
<td>HMMs</td>
<td>5.4%</td>
</tr>
<tr>
<td>Markov Logic Networks</td>
<td>4.9%</td>
</tr>
<tr>
<td>GANs</td>
<td>2.8%</td>
</tr>
</tbody>
</table>
Summary

- **Linearly separable** classification problems.
- **Logistic loss** ℓ_{\log} and (empirical) risk \hat{R}_{\log}.
- **Gradient descent**.