MLE part 2
Gaussian Mixture Model

Suppose data is drawn from \(k \) Gaussians, meaning
\[
Y = j \sim \text{Discrete}(\pi_1, \ldots, \pi_k),
\]
\[
X = x|Y = j \sim \mathcal{N} (\mu_j, \Sigma_j),
\]
and the parameters are \(\theta = ((\pi_1, \mu_1, \Sigma_1), \ldots, (\pi_k, \mu_k, \Sigma_k)) \).
(Note: this is a **generative** model, and we have a way to sample.)
Gaussian Mixture Model

- Suppose data is drawn from k Gaussians, meaning
 \[Y = j \sim \text{Discrete}(\pi_1, \ldots, \pi_k), \]
 \[X = x | Y = j \sim \mathcal{N}(\mu_j, \Sigma_j), \]
 and the parameters are $\theta = ((\pi_1, \mu_1, \Sigma_1), \ldots, (\pi_k, \mu_k, \Sigma_k))$.
 (Note: this is a \textbf{generative} model, and we have a way to sample.)

- The probability density (with parameters $\theta = ((\pi_j, \mu_j, \Sigma_j))_{j=1}^k$) at a given x is
 \[p_\theta(x) = \sum_{j=1}^k p_\theta(x | y = j)p_\theta(y = j) = \sum_{j=1}^k p_{\mu_j, \Sigma_j}(x | Y = j)\pi_j, \]
 and the likelihood problem is
 \[\mathcal{L}(\theta) = \sum_{i=1}^n \ln \sum_{j=1}^k \frac{\pi_j}{\sqrt{(2\pi)^d|\Sigma|}} \exp \left(\mathbf{-\frac{1}{2}(x_i - \mu_j)^T\Sigma^{-1}(x_i - \mu_j)} \right). \]
 The \ln and the \exp are no longer next to each other; we can’t just take the derivative and set the answer to 0.
Lloyd’s method for k-means

Original k-means formulation

$$\phi((\mu_1, \ldots, \mu_k)) = \sum_{i=1}^{n} \min_{j} ||x_i - \mu_j||^2.$$
Lloyd’s method for \(k \)-means

Original \(k \)-means formulation

\[
\phi((\mu_1, \ldots, \mu_k)) = \sum_{i=1}^{n} \min_j \|x_i - \mu_j\|^2.
\]

To make an algorithm, we introduced *assignment matrix* \(A \in A_{n,k} \):

\[
\phi((\mu_1, \ldots, \mu_k); A) = \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \|x_i - \mu_j\|^2.
\]
Lloyd’s method for k-means

Original k-means formulation

$$
\phi((\mu_1, \ldots, \mu_k)) = \sum_{i=1}^{n} \min_j \|x_i - \mu_j\|^2.
$$

To make an algorithm, we introduced assignment matrix $A \in A_{n,k}$:

$$
\phi((\mu_1, \ldots, \mu_k); A) = \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \|x_i - \mu_j\|^2.
$$

Let’s do the same thing with Gaussians!
Gaussian mixture likelihood with *responsibility matrix* \mathbf{R}

Let’s replace $\sum_{i=1}^{n} \ln \sum_{j=1}^{k} \pi_{j} p_{\mu_{j}, \Sigma_{j}} (x_{i})$ with

$$\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln (\pi_{j} p_{\mu_{j}, \Sigma_{j}} (x_{i}))$$

where $\mathbf{R} \in \mathcal{R}_{n,k} := \{ \mathbf{R} \in [0, 1]^{n \times k} : \mathbf{R} \mathbf{1}_{k} = \mathbf{1}_{n} \}$ is a *responsibility matrix.*
Gaussian mixture likelihood with responsibility matrix R

Let’s replace $\sum_{i=1}^{n} \ln \sum_{j=1}^{k} \pi_j p_{\mu_j,\Sigma_j}(x_i)$ with

$$\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln (\pi_j p_{\mu_j,\Sigma_j}(x_i))$$

where $R \in \mathcal{R}_{n,k} := \{ R \in [0,1]^{n \times k} : R1_k = 1_n \}$ is a responsibility matrix.

Holding R fixed and optimizing θ gives

$$\pi_j := \frac{\sum_{i=1}^{n} R_{ij}}{\sum_{i=1}^{n} \sum_{l=1}^{k} R_{il}} = \frac{\sum_{i=1}^{n} R_{ij}}{n};$$

$$\mu_j := \frac{\sum_{i=1}^{n} R_{ij} x_i}{\sum_{i=1}^{n} R_{ij}} = \frac{\sum_{i=1}^{n} R_{ij} x_i}{n \pi_j},$$

$$\Sigma_j := \frac{\sum_{i=1}^{n} R_{ij} (x_i - \mu_j)(x_i - \mu_j)^T}{n \pi_j}.$$

(Should use new mean in Σ_j so that all derivatives 0.)
Updating μ_j

Recall our new likelihood with responsibilities R:

$$
\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \pi_j p_{\mu_j, \Sigma_j}(x_i)
$$

(In the literature, this quantity is “expected complete data likelihood”.)
Updating μ_j

Recall our new likelihood with responsibilities R:

$$\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \pi_j p_{\mu_j, \Sigma_j}(x_i)$$

(In the literature, this quantity is “expected complete data likelihood”.)

Taking derivative and setting to 0:

$$0 = \sum_{i=1}^{n} R_{ij} \nabla_{\mu_j} \left(\ln \exp \left(-\frac{1}{2} (x_i - \mu_j)^T \Sigma_j^{-1} (x_i - \mu_j) \right) + \text{terms w/o } \mu_j \right)$$

$$= \sum_{i=1}^{n} R_{ij} \Sigma_j^{-1} (x_i - \mu_j).$$

Rearranging, $\mu_j = \frac{\sum_{i=1}^{n} R_{ij} x_i}{n \pi_j}$.

Remark: can move μ_j along right nullspace of Σ_j^{-1}.

Recall our new likelihood with responsibilities \mathbf{R}:

$$
\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \pi_j p(\mathbf{\mu}_j, \mathbf{\Sigma}_j) (\mathbf{x}_i)
$$
Updating π

Recall our new likelihood with responsibilities R:

$$\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \pi_j p_{\mu_j, \Sigma_j}(x_i)$$

Taking derivative and setting to 0:

$$0 = \sum_{i=1}^{n} \frac{R_{ij}}{\pi_j} ;$$

oops?
Updating \(\pi \)

Recall our new likelihood with responsibilities \(\mathbf{R} \):

\[
\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \pi_j p_{\mu_j, \Sigma_j}(\mathbf{x}_i)
\]

Taking derivative and setting to 0:

\[
0 = \sum_{i=1}^{n} \frac{R_{ij}}{\pi_j};
\]

oops?

Fix: we forgot the constraints on \(\pi \)!
Updating π

Include constraint $\sum_{j=1}^{k} \pi_j = 1$ with a Lagrangian:

$$
\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \pi_j \mu_j, \Sigma_j (x_i) + \lambda \left(1 - \sum_{j=1}^{k} \pi_j \right)
$$
Updating π

Include constraint $\sum_{j=1}^{k} \pi_j = 1$ with a Lagrangian:

$$\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \pi_j p_{\mu_j}, \Sigma_j (x_i) + \lambda \left(1 - \sum_{j=1}^{k} \pi_j \right)$$

Differentiating and setting this Lagrangian to 0, we get

$$\lambda = \sum_{i=1}^{n} \frac{R_{ij}}{\pi_j}, \text{ and } \sum_{j} \pi_j = 1.$$
Updating π

Include constraint $\sum_{j=1}^{k} \pi_j = 1$ with a Lagrangian:

$$
\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \pi_j p_{\mu_j, \Sigma_j (x_i)} + \lambda \left(1 - \sum_{j=1}^{k} \pi_j \right)
$$

Differentiating and setting this Lagrangian to 0, we get

$$
\lambda = \sum_{i=1}^{n} \frac{R_{ij}}{\pi_j}, \quad \text{and} \quad \sum_{j} \pi_j = 1.
$$

Together, $\pi_j = \sum_{i=1}^{n} \frac{R_{ij}}{\lambda}$, and

$$
1 = \sum_{j=1}^{k} \pi_j = \sum_{j=1}^{k} \sum_{i=1}^{n} \frac{R_{ij}}{\lambda} = \frac{n}{\lambda},
$$

so $\lambda = n$ and $\pi_j = \sum_{i=1}^{n} \frac{R_{ij}}{n}$.
Starting again from likelihood with responsibilities \(R \):

\[
\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \pi_j p_{\mu_j, \Sigma_j}(x_i).
\]
Updating Σ_j

Starting again from likelihood with responsibilities R:

$$\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \pi_j p_{\mu_j, \Sigma_j}(x_i).$$

Taking derivative and setting to 0,

$$0 = \sum_{i=1}^{n} R_{ij} \nabla \Sigma_j \left(-\frac{1}{2} (x_i - \mu_j)^{\top} \Sigma_j^{-1} (x_i - \mu_j) - \frac{1}{2} \ln |\Sigma_j| + \text{other stuff} \right).$$
Updating Σ_j

Starting again from likelihood with responsibilities R:

$$
\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \pi_j p_{\mu_j, \Sigma_j}(x_i).
$$

Taking derivative and setting to 0,

$$
0 = \sum_{i=1}^{n} R_{ij} \nabla \Sigma_j \left(-\frac{1}{2} (x_i - \mu_j)^\top \Sigma_j^{-1} (x_i - \mu_j) - \frac{1}{2} \ln |\Sigma_j| + \text{other stuff} \right).
$$

By magic matrix derivative rules,

$$
\Sigma_j^{-1} = \sum_{i=1}^{n} R_{ij} (x_i - \mu_j)(x_i - \mu_j)^\top/(n\pi_j).
$$
Summary of θ optimization

Replace $\sum_{i=1}^{n} \ln \left(\sum_{j=1}^{k} \pi_j p_{\mu_j, \Sigma_j}(x_i) \right)$ with

$$\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \left(\pi_j p_{\mu_j, \Sigma_j}(x_i) \right).$$

Hold R fixed and optimize θ:

$$\pi_j := \frac{\sum_{i=1}^{n} R_{ij}}{\sum_{i=1}^{n} \sum_{l=1}^{k} R_{il}} \quad = \quad \frac{\sum_{i=1}^{n} R_{ij}}{n};$$

$$\mu_j := \frac{\sum_{i=1}^{n} R_{ij} x_i}{\sum_{i=1}^{n} R_{ij}} \quad = \quad \frac{\sum_{i=1}^{n} R_{ij} x_i}{n\pi_j};$$

$$\Sigma_j := \frac{\sum_{i=1}^{n} R_{ij} (x_i - \mu_j)(x_i - \mu_j)^\top}{n\pi_j}.$$
Summary of θ optimization

Replace $\sum_{i=1}^{n} \ln \left(\sum_{j=1}^{k} \pi_j \rho_{\mu_j, \Sigma_j}(x_i) \right)$ with

$$
\sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \left(\pi_j \rho_{\mu_j, \Sigma_j}(x_i) \right).
$$

Hold R fixed and optimize θ:

- $\pi_j := \frac{\sum_{i=1}^{n} R_{ij}}{\sum_{i=1}^{n} \sum_{l=1}^{k} R_{il}} = \frac{\sum_{i=1}^{n} R_{ij}}{n}$;
- $\mu_j := \frac{\sum_{i=1}^{n} R_{ij} x_i}{\sum_{i=1}^{n} R_{ij}} = \frac{\sum_{i=1}^{n} R_{ij} x_i}{n \pi_j}$;
- $\Sigma_j := \frac{\sum_{i=1}^{n} R_{ij} (x_i - \mu_j)(x_i - \mu_j)^\top}{n \pi_j}$.

How to optimize R_{ij}?

- Likelihood lacks the \min_j from the k-means cost.
- We’ll now develop the E-M method, which picks R in a way that guarantees likelihood increases.
E-M (Expectation-Maximization)
We introduced an assignment matrix $A \in \{0, 1\}^{n \times k}$:

- For each x_i, define $\mu(x_i)$ to be a closest center:
 \[\|x_i - \mu(x_i)\| = \min_j \|x_i - \mu_j\|\].
- For each i, set $A_{ij} = 1[\mu(x_i) = \mu_j]$.

Key property: by this choice, $\phi(C; A) = \sum_i \sum_j A_{ij} \|x_i - \mu_j\|^2 = \sum_i \min_j \|x_i - \mu_j\|^2 = \phi(C; A)$, therefore we can decrease $\phi(C) = \phi(C; A)$ first by optimizing C to get $\phi(C'; A) \leq \phi(C; A)$, then setting A as above to get $\phi(C') = \phi(C'; A) \leq \phi(C; A) \leq \phi(C)$. In other words: we minimize $\phi(C)$ via $\phi(C; A)$. What fulfills the same role for L?
Generalizing the assignment matrix to GMMs

We introduced an assignment matrix $A \in \{0, 1\}^{n \times k}$:

- For each x_i, define $\mu(x_i)$ to be a closest center:
 $$\|x_i - \mu(x_i)\| = \min_j \|x_i - \mu_j\|.$$

- For each i, set $A_{ij} = 1[\mu(x_i) = \mu_j]$.

- **Key property:** by this choice,
 $$\phi(C; A) = \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \|x_i - \mu_j\|^2 = \sum_{i=1}^{n} \min_j \|x_i - \mu_j\|^2 = \phi(C);$$

therefore we can decrease $\phi(C) = \phi(C; A)$

 first by optimizing C to get $\phi(C'; A) \leq \phi(C; A)$,

 then setting A as above to get

 $$\phi(C') = \phi(C'; A') \leq \phi(C'; A) \leq \phi(C; A) = \phi(C).$$

In other words: we minimize $\phi(C)$ via $\phi(C; A)$.
Generalizing the assignment matrix to GMMs

We introduced an \textbf{assignment matrix} $A \in \{0, 1\}^{n \times k}$:

- For each x_i, define $\mu(x_i)$ to be a closest center:
 \[\|x_i - \mu(x_i)\| = \min_j \|x_i - \mu_j\|. \]

- For each i, set $A_{ij} = 1[\mu(x_i) = \mu_j]$.

Key property: by this choice,
\[
\phi(C; A) = \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \|x_i - \mu_j\|^2 = \sum_{i=1}^{n} \min_j \|x_i - \mu_j\|^2 = \phi(C);
\]

therefore we can decrease $\phi(C) = \phi(C; A)$

first by optimizing C to get $\phi(C'; A) \leq \phi(C; A)$,

then setting A as above to get
\[
\phi(C') = \phi(C'; A') \leq \phi(C'; A) \leq \phi(C; A) = \phi(C).
\]

\textbf{In other words:} we minimize $\phi(C)$ via $\phi(C; A)$.

What fulfills the same role for \mathcal{L}?
Latent variable models.

Since \(1 = \sum_{j=1}^{k} p_{\theta}(y_i = j | x_i) \) and \(p_{\theta}(y_i = j | x_i) = \frac{p_{\theta}(y_i = j, x_i)}{p_{\theta}(x_i)} \), then

\[
\mathcal{L}(\theta) = \sum_{i=1}^{n} \ln p_{\theta}(x_i) = \sum_{i=1}^{n} 1 \cdot \ln p_{\theta}(x_i) = \sum_{i=1}^{n} \sum_{j=1}^{k} p_{\theta}(y_i = j | x_i) \ln p_{\theta}(x_i)
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{k} p_{\theta}(y_i = j | x_i) \ln \left(\frac{p_{\theta}(x_i, y_i = j)}{p_{\theta}(y_i = j | x_i)} \right).
\]
Since \(1 = \sum_{j=1}^{k} p_{\theta}(y_i = j | x_i) \) and \(p_{\theta}(y_i = j | x_i) = \frac{p_{\theta}(y_i = j, x_i)}{p_{\theta}(x_i)} \), then

\[
L(\theta) = \sum_{i=1}^{n} \ln p_{\theta}(x_i) = \sum_{i=1}^{n} 1 \cdot \ln p_{\theta}(x_i) = \sum_{i=1}^{n} \sum_{j=1}^{k} p_{\theta}(y_i = j | x_i) \ln p_{\theta}(x_i) = \sum_{i=1}^{n} \sum_{j=1}^{k} p_{\theta}(y_i = j | x_i) \ln \frac{p_{\theta}(x_i, y_i = j)}{p_{\theta}(y_i = j | x_i)}.
\]

Therefore: define **augmented likelihood**

\[
L(\theta; R) := \sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \frac{p_{\theta}(x_i, y_i = j)}{R_{ij}};
\]

note that \(R_{ij} := p_{\theta}(y_i = j | x_i) \) implies \(L(\theta; R) = L(\theta) \).
Define augmented likelihood

\[
L(\theta; R) := \sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \frac{p_{\theta}(x_i, y_i = j)}{R_{ij}},
\]

with responsibility matrix \(R \in \mathcal{R}_{n,k} := \{ R \in [0,1]^{n \times k} : R1_k = 1_n \} \).

Alternate two steps:

- **E-step:** set \((R_t)_{ij} := p_{\theta_t-1}(y_i = j|x_i) \).
- **M-step:** set \(\theta_t = \arg \max_{\theta \in \Theta} L(\theta; R_t) \).
E-M method for latent variable models

Define **augmented likelihood**

\[
\mathcal{L}(\theta; R) := \sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \frac{p_{\theta}(x_i, y_i = j)}{R_{ij}},
\]

with **responsibility matrix** \(R \in \mathcal{R}_{n,k} := \{ R \in [0, 1]^{n \times k} : R1_k = 1_n \} \).

Alternate two steps:

- **E-step:** set \((R_t)_{ij} := p_{\theta_{t-1}}(y_i = j | x_i)\).
- **M-step:** set \(\theta_t = \arg \max_{\theta \in \Theta} \mathcal{L}(\theta; R_t)\).

Soon: we’ll see this gives nondecreasing likelihood!
E-M for Gaussian mixtures

Initialization: a standard choice is $\pi_j = 1/k$, $\Sigma_j = I$, and $(\mu_j)_{j=1}^k$ given by k-means.

▶ **E-step:** Set $R_{ij} = p_\theta(y_i = j | x_i)$, meaning

$$R_{ij} = p_\theta(y_i = j | x_i) = \frac{p_\theta(y_i = j, x_i)}{p_\theta(x_i)} = \frac{\pi_j p_{\mu_j, \Sigma_j}(x_i)}{\sum_{l=1}^k \pi_l p_{\mu_l, \Sigma_l}(x_i)}.$$

▶ **M-step:** solve $\arg\max_{\theta \in \Theta} \mathcal{L}(\theta; R)$, meaning

$$\pi_j := \frac{\sum_{i=1}^n R_{ij}}{\sum_{i=1}^n \sum_{l=1}^k R_{il}} = \frac{\sum_{i=1}^n R_{ij}}{n},$$

$$\mu_j := \frac{\sum_{i=1}^n R_{ij} x_i}{\sum_{i=1}^n R_{ij}} = \frac{\sum_{i=1}^n R_{ij} x_i}{n \pi_j},$$

$$\Sigma_j := \frac{\sum_{i=1}^n R_{ij} (x_i - \mu_j)(x_i - \mu_j)^\top}{n \pi_j}.$$

(These are as before.)
Demo: spherical clusters

(Initialized with k-means, thus not so dramatic.)
Demo: spherical clusters

(Initialized with k-means, thus not so dramatic.)
Demo: spherical clusters

(Initialized with k-means, thus not so dramatic.)
Demo: spherical clusters

(Initialized with k-means, thus not so dramatic.)
Demo: spherical clusters

(Initialized with k-means, thus not so dramatic.)
Demo: spherical clusters

(Initialized with k-means, thus not so dramatic.)
Demo: spherical clusters

(Initialized with k-means, thus not so dramatic.)
Demo: spherical clusters

(Initialized with k-means, thus not so dramatic.)
Demo: spherical clusters

(Initialized with k-means, thus not so dramatic.)
Demo: spherical clusters

(Initialized with k-means, thus not so dramatic.)
Demo: elliptical clusters

E...
Demo: elliptical clusters

E... M...
Demo: elliptical clusters

E... M... E...
Demo: elliptical clusters
Demo: elliptical clusters

E... M... E... M... E...
Demo: elliptical clusters

E... M... E... M... E... M...
Demo: elliptical clusters
Demo: elliptical clusters
Demo: elliptical clusters
Demo: elliptical clusters

E... M... E... M... E... M... E... M...
Demo: elliptical clusters
Demo: elliptical clusters
Demo: elliptical clusters

E... M... E... M... E... M... E... M...
Demo: elliptical clusters
Demo: elliptical clusters
Demo: elliptical clusters

E... M... E... M... E... M... E... M...
Demo: elliptical clusters
Demo: elliptical clusters

E... M... E... M... E... M... E... M...
Demo: elliptical clusters
Demo: elliptical clusters

E... M... E... M... E... M... E... M...
Demo: elliptical clusters
Demo: elliptical clusters

E... M... E... M... E... M... E... M...
Demo: elliptical clusters

E... M... E... M... E... M... E... M...
Demo: elliptical clusters

\[E \ldots M \ldots E \ldots M \ldots E \ldots M \ldots E \ldots M \ldots \]
Demo: elliptical clusters
Demo: elliptical clusters
Demo: elliptical clusters
Theorem.
Suppose \((\mathbf{R}_0, \theta_0) \in \mathcal{R}_{n,k} \times \Theta\) arbitrary, thereafter \((\mathbf{R}_t, \theta_t)\) given by E-M:

\[
(\mathbf{R}_t)_{ij} := p_{\theta_{t-1}}(y = j|\mathbf{x}_i).
\]

and

\[
\theta_t := \arg\max_{\theta \in \Theta} \mathcal{L}(\theta; \mathbf{R}_t)
\]

Then

\[
\mathcal{L}(\theta_t; \mathbf{R}_t) \leq \max_{\mathbf{R} \in \mathcal{R}_{n \times k}} \mathcal{L}(\theta_t; \mathbf{R}) = \mathcal{L}(\theta_t; \mathbf{R}_{t+1}) = \mathcal{L}(\theta_t)
\]

\[
\leq \mathcal{L}(\theta_{t+1}; \mathbf{R}_{t+1}).
\]

In particular, \(\mathcal{L}(\theta_t) \leq \mathcal{L}(\theta_{t+1})\).
Theorem. Suppose $(R_0, \theta_0) \in \mathcal{R}_{n,k} \times \Theta$ arbitrary, thereafter (R_t, θ_t) given by E-M:

$$(R_t)_{ij} := p_{\theta_t-1}(y = j|x_i).$$

and

$$\theta_t := \arg \max_{\theta \in \Theta} \mathcal{L}(\theta; R_t)$$

Then

$$\mathcal{L}(\theta_t; R_t) \leq \max_{R \in \mathcal{R}_{n \times k}} \mathcal{L}(\theta_t; R) = \mathcal{L}(\theta_t; R_{t+1}) = \mathcal{L}(\theta_t)$$

$$\leq \mathcal{L}(\theta_{t+1}; R_{t+1}).$$

In particular, $\mathcal{L}(\theta_t) \leq \mathcal{L}(\theta_{t+1}).$

Remarks.

- We proved a similar guarantee for k-means, which is also an alternating minimization scheme.

- Similarly, MLE for Gaussian mixtures is NP-hard; it is also known to need exponentially many samples in k to information-theoretically recover the parameters.
Proof. We’ve already shown:

- $\mathcal{L}(\theta_t; R_{t+1}) = \mathcal{L}(\theta_t);
- $\mathcal{L}(\theta_t; R_{t+1}) = \max_{\theta \in \Theta} \mathcal{L}(\theta; R_{t+1}) \leq \mathcal{L}(\theta_{t+1}; R_{t+1})$ by definition of θ_{t+1}.

We still need to show: $\mathcal{L}(\theta_t; R_{t+1}) = \max_{R \in \mathcal{R}_{n,k}} \mathcal{L}(\theta_{t+1}; R)$.

We’ll give two proofs.
Proof. We’ve already shown:

- \(\mathcal{L}(\theta_t; R_{t+1}) = \mathcal{L}(\theta_t) \);
- \(\mathcal{L}(\theta_t; R_{t+1}) = \max_{\theta \in \Theta} \mathcal{L}(\theta; R_{t+1}) \leq \mathcal{L}(\theta_{t+1}; R_{t+1}) \) by definition of \(\theta_{t+1} \).

We still need to show: \(\mathcal{L}(\theta_t; R_{t+1}) = \max_{R \in \mathcal{R}_{n,k}} \mathcal{L}(\theta_{t+1}; R) \).

We’ll give two proofs.

By concavity of \(\ln \) (“Jensen’s inequality” in convexity lectures), for any \(R \in \mathcal{R}_{n,k} \),

\[
\mathcal{L}(\theta_t; R) = \sum_{i=1}^{n} \sum_{j=1}^{k} R_{ij} \ln \frac{p_{\theta_t}(x_i, y_i = j)}{R_{ij}} \\
\leq \sum_{i=1}^{n} \ln \left(\sum_{j=1}^{k} R_{ij} \frac{p_{\theta_t}(x_i, y_i = j)}{R_{ij}} \right) \\
= \sum_{i=1}^{n} \ln p_{\theta_t}(x_i) = \mathcal{L}(\theta_t) = \mathcal{L}(\theta_t; R_{t+1}).
\]

Since \(R \) was arbitrary, \(\max_{R \in \mathcal{R}} \mathcal{L}(\theta_t; R) = \mathcal{L}(\theta_t; R_{t+1}) \).
Proof (continued). Here’s a second proof of that missing fact. To evaluate \(\arg \max_{R \in \mathcal{R}_{n,k}} \mathcal{L}(\theta; R) \), consider Lagrangian

\[
\sum_{i=1}^{n} \left(\sum_{j=1}^{k} R_{i,j} \ln p_{\theta}(x_i, y = j) - \sum_{j=1}^{k} R_{i,j} \ln R_{i,j} + \lambda_i \left(\sum_{j=1}^{k} R_{i,j} - 1 \right) \right).
\]

Fixing \(i \) and taking the gradient with respect to \(R_{i,j} \) for any \(j \),

\[
0 = \ln p_{\theta}(x_i, y_i = j) - \ln R_{i,j} - 1 + \lambda_i,
\]

giving \(R_{i,j} = p_{\theta}(x_i, y = j) \exp(\lambda_i - 1) \). Since moreover

\[
1 = \sum_{j} R_{i,j} = \exp(\lambda_i - 1) \sum_{j} p_{\theta}(x_i, y = j) = \exp(\lambda_i - 1) p_{\theta}(x_i),
\]

it follows that \(\exp(\lambda_i - 1) = 1/p_{\theta}(x_i) \),

and the optimal \(R \) satisfies \(R_{i,j} = p_{\theta}(x_i, y = j)/p_{\theta}(x_i) = p_{\theta}(y = j | x_i) \). \(\square \)
Related issues.
Parameter constraints.

E-M for GMMs \textbf{still works} if we freeze or constrain some parameters.
Parameter constraints.

E-M for GMMs **still works** if we freeze or constrain some parameters.

Examples:

- **No weights:** initialize $\pi = (1/k, \ldots, 1/k)$ and never update it.
- **Diagonal covariance matrices:** update everything as before, except $\Sigma_j := \text{diag}((\sigma_j)_1^2, \ldots, (\sigma_j)_d^2)$ where

$$
(\sigma_j)_l^2 := \frac{\sum_{i=1}^{n} R_{ij} (x_i - \mu_j)_l^2}{n\pi_j};
$$

that is: we use coordinate-wise sample variances weighted by R.

Why is this a good idea?
Parameter constraints.

E-M for GMMs **still works** if we freeze or constrain some parameters.

Examples:

- **No weights:** initialize $\pi = (1/k, \ldots, 1/k)$ and never update it.
- **Diagonal covariance matrices:** update everything as before, except $\Sigma_j := \text{diag}(\sigma_j^2_1, \ldots, \sigma_j^2_d)$ where

 $$(\sigma_j^2)_l := \frac{\sum_{i=1}^n R_{ij} (x_i - \mu_j)_l^2}{n \pi_j};$$

 that is: we use coordinate-wise sample variances weighted by R.

 Why is this a good idea?
 Computation (of inverse), sample complexity, . . .
Gaussian Mixture Model with diagonal covariances.
E-M with GMMs suffers from singularities: trivial situations where the likelihood goes to \(\infty\) but the solution is bad.

Suppose:

- \(d = 1, k = 2, \pi_j = \frac{1}{2}\),
- \(n = 3\) with \(x_1 = -1\) and \(x_2 = +1\) and \(x_3 = +3\).
- Initialize with \(\mu_1 = 0\) and \(\sigma_1 = 1\),
- but \(\mu_2 = +3 = x_3\) and \(\sigma_2 = \frac{1}{100}\).
- Then \(\sigma_2 \rightarrow 0\) and \(\mathcal{L} \uparrow \infty\).
Interpolating between k-means and GMM E-M

Same M-step: fix $\pi = (1/k, \ldots, 1/k)$ and $\Sigma_j = cI$ for a fixed $c > 0$.
Interpolating between k-means and GMM E-M

Same M-step: fix $\pi = (1/k, \ldots, 1/k)$ and $\Sigma_j = cI$ for a fixed $c > 0$.

Same E-step: define $q_{ij} := \frac{1}{2} \|x_i - \mu_j\|^2$; the E-step chooses

$$R_{ij} := p_\Theta(y_i = j|x_i) = \frac{p_\Theta(y_i = j, x_i)}{p_\Theta(x_i)} = \frac{p_\Theta(y_i = j, x_i)}{\sum_{l=1}^k p_\Theta(y_i = l, x_i)}$$

$$= \frac{\pi_j p_{\mu_j, \Sigma_j}(x_i)}{\sum_{l=1}^k \pi_l p_{\mu_l, \Sigma_l}(x_i)} = \frac{\exp(-q_{ij}/c)}{\sum_{l=1}^k \exp(-q_{il}/c)}$$

Fix $i \in \{1, \ldots, n\}$ and suppose minimum $q_i := \min_j q_{ij}$ is unique:
Interpolating between k-means and GMM E-M

Same M-step: fix $\pi = (1/k, \ldots, 1/k)$ and $\Sigma_j = cI$ for a fixed $c > 0$.

Same E-step: define $q_{ij} := \frac{1}{2} \|x_i - \mu_j\|^2$; the E-step chooses

$$R_{ij} := p_\theta(y_i = j | x_i) = \frac{p_\theta(y_i = j, x_i)}{p_\theta(x_i)} = \frac{p_\theta(y_i = j, x_i)}{\sum_{l=1}^k p_\theta(y_i = l, x_i)}$$

$$= \frac{\pi_j p_{\mu_j}, \Sigma_j(x_i)}{\sum_{l=1}^k \pi_l p_{\mu_l}, \Sigma_l(x_i)} = \frac{\exp(-q_{ij}/c)}{\sum_{l=1}^k \exp(-q_{il}/c)}$$

Fix $i \in \{1, \ldots, n\}$ and suppose minimum $q_i := \min_j q_{ij}$ is unique:

$$\lim_{c \downarrow 0} R_{ij} = \lim_{c \downarrow 0} \frac{\exp(-q_{ij}/c)}{\sum_{l=1}^k \exp(-q_{il}/c)} = \lim_{c \downarrow 0} \frac{\exp(q_i - q_{ij}/c)}{\sum_{l=1}^k \exp(q_i - q_{il}/c)} = \begin{cases} 1 \text{ } q_{ij} = q_i, \\ 0 \text{ } q_{ij} \neq q_i. \end{cases}$$

That is, R becomes hard assignment A as $c \downarrow 0$.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here's something like \(k \)-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here’s something like k-means but with weights and covariances.
Interpolating between k-means and GMM E-M (part 2)

We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here's something like k-means but with weights and covariances.
Interpolating between k-means and GMM E-M (part 2)

We can interpolate *algorithmically*, meaning we can create algorithms that have elements of both. Here’s something like k-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here's something like k-means but with weights and covariances.
Interpolating between \(k \)-means and GMM E-M (part 2)

We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here's something like \(k \)-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here’s something like k-means but with weights and covariances.
Interpolating between k-means and GMM E-M (part 2)

We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here’s something like k-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here’s something like k-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here's something like k-means but with weights and covariances.
Interpolating between k-means and GMM E-M (part 2)

We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here's something like k-means but with weights and covariances.
We can interpolate **algorithmically**, meaning we can create algorithms that have elements of both. Here's something like k-means but with weights and covariances.
Interpolating between k-means and GMM E-M (part 2)

We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here's something like k-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here’s something like k-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here’s something like k-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here's something like k-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here's something like \(k\)-means but with weights and covariances.
Interpolating between k-means and GMM E-M (part 2)

We can interpolate \textit{algorithmically}, meaning we can create algorithms that have elements of both. Here's something like k-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here's something like k-means but with weights and covariances.
Interpolating between k-means and GMM E-M (part 2)

We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here’s something like k-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here’s something like k-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here’s something like \(k \)-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here’s something like \(k \)-means but with weights and covariances.
We can interpolate algorithmically, meaning we can create algorithms that have elements of both. Here’s something like k-means but with weights and covariances.
Summary of MLE part 2