Deep networks

CS 446
These lectures will follow an ERM perspective on deep networks:

- Pick a **model/predictor class (network architecture)**.
 (We will spend most of our time on this!)

- Pick a **loss/risk**.
 (We will almost always use cross-entropy!)

- Pick an **optimizer**.
 (We will mostly treat this as a black box!)

The goal is low **test error**, whereas above only gives low **training error**; we will briefly discuss this as well.
1. Linear networks.
Iterated linear predictors

The most basic view of a neural network is an iterated linear predictor.

- 1 layer:
 \[x \mapsto W_1 x + b_1. \]

- 2 layers:
 \[x \mapsto W_2 (W_1 x + b_1) + b_2. \]

- 3 layers:
 \[x \mapsto W_3 (W_2 (W_1 x + b_1) + b_2) + b_3. \]

- \(L \) layers:
 \[x \mapsto W_L (\cdots (W_1 x + b_1) \cdots) + b_L. \]

Alternatively, this is a composition of linear predictors:

\[x \mapsto (f_L \circ f_{L-1} \circ \cdots \circ f_1) (x), \]

where \(f_i(z) = W_i z + b_i \) is an affine function.

Note: “layer” terminology is ambiguous, we’ll revisit it.
Wait a minute...

Note that

\[W_L (\cdots (W_1 x + b_1) \cdots) + b_L \]
\[= (W_L \cdots W_1) x + (b_L + W_L b_{L-1} + \cdots + W_L \cdots W_2 b_1) \]
\[= w^T [x_1], \]

where \(w \in \mathbb{R}^{d+1} \) is

\[w_{1:d}^T = W_L \cdots W_1, \quad w_{d+1} = b_L + W_L b_{L-1} + \cdots + W_L \cdots W_2 b_1. \]

Oops, this is just a linear predictor.
2. Activations/nonlinearities.
Recall that logistic regression could be interpreted as a probability model:

\[
\Pr[Y = 1 | X = x] = \frac{1}{1 + \exp(-\mathbf{w}^\top \mathbf{x})} =: \sigma_s(\mathbf{w}^\top \mathbf{x}),
\]

where \(\sigma_s \) is the logistic or sigmoid function.

Don't worry, we'll slow down next slide; for now, iterated logistic regression gave our first deep network!

Remark: can view intermediate layers as features to subsequent layers.
Iterated **logistic regression**

Recall that logistic regression could be interpreted as a probability model:

$$\Pr[Y = 1 | X = x] = \frac{1}{1 + \exp(-w^T x)} =: \sigma_s(w^T x),$$

where σ_s is the **logistic** or **sigmoid** function.

Now suppose σ_s is applied coordinate-wise, and consider

$$x \mapsto (f_L \circ \cdots \circ f_1)(x) \quad \text{where} \quad f_i(z) = \sigma_s(W_i z + b_i).$$

Don't worry, we'll slow down next slide; for now, iterated logistic regression gave our first deep network!

Remark: can view intermediate layers as **features** to subsequent layers.
Basic deep networks

A self-contained expression is

$$x \mapsto \sigma_L \left(W_L \sigma_{L-1} \left(\cdots \left(W_2 \sigma_1 (W_1 x + b_1) + b_2 \right) \cdots \right) + b_L \right),$$

with equivalent “functional form”

$$x \mapsto (f_L \circ \cdots \circ f_1)(x) \quad \text{where } f_i(z) = \sigma_i (W_i z + b_i).$$

Some further details (many more to come!):

- $(W_i)^L_{i=1}$ with $W_i \in \mathbb{R}^{d_i \times d_{i-1}}$ are the weights, and $(b_i)^L_{i=1}$ are the biases.
- $(\sigma_i)^L_{i=1}$ with $\sigma_i : \mathbb{R}^{d_i} \rightarrow \mathbb{R}^{d_i}$ are called nonlinearities, or activations, or transfer functions, or link functions.
- This is only the basic setup; many things can and will change, please ask many questions!
Choices of activation

Basic form:

\[x \mapsto \sigma_L \left(W_L \sigma_{L-1} (\cdots W_2 \sigma_1 (W_1 x + b_1) + b_2 \cdots) + b_L \right). \]

Choices of activation (univariate, coordinate-wise):

- **Indicator/step/heavyside/threshold** \(z \mapsto 1[z \geq 0] \).
 This was the original choice (1940s!).

- **Sigmoid** \(\sigma_s(z) := \frac{1}{1+\exp(-z)} \).
 This was popular roughly 1970s - 2005?

- **Hyperbolic tangent** \(z \mapsto \tanh(z) \).
 Similar to sigmoid, used during same interval.

- **Rectified Linear Unit (ReLU)** \(\sigma_r(z) = \max\{0, z\} \).
 It (and slight variants, e.g., Leaky ReLU, ELU, ...) are the dominant choice now; popularized in “Imagenet/AlexNet” paper (Krizhevsky-Sutskever-Hinton, 2012).

- **Identity** \(z \mapsto z \); we’ll often use this as the last layer when we use cross-entropy loss.

- **NON-coordinate-wise choices**: we will discuss “softmax” and “pooling” a bit later.
“Architectures” and “models”

Basic form:

\[x \mapsto \sigma_L \left(W_L \sigma_{L-1} \left(\cdots W_2 \sigma_1 (W_1 x + b_1) + b_2 \cdots \right) + b_L \right). \]

\(((W_i, b_i))_{i=1}^{L}, \text{ the weights and biases, are the parameters.} \)

Let’s roll them into \(\mathcal{W} := (((W_i, b_i))_{i=1}^{L}, \text{ and consider the network as a two-parameter function } F_{\mathcal{W}}(x) = F(x; \mathcal{W}). \)

- The model or class of functions is \(\{F_{\mathcal{W}} : \text{all possible } \mathcal{W}\}. \) \(F \) (both arguments unset) is also called an architecture.
- When we fit/train/optimize, typically we leave the architecture fixed and vary \(\mathcal{W} \) to minimize risk.

(More on this in a moment.)
ERM recipe for basic networks

Standard ERM recipe:

▶ First we pick a class of functions/predictors; for deep networks, that means a $F(\cdot, \cdot)$.

▶ Then we pick a loss function and write down an empirical risk minimization problem; in these lectures we will pick cross-entropy:

$$\arg \min_{W} \frac{1}{n} \sum_{i=1}^{n} \ell_{ce}(y_i, F(x_i, W))$$

$$= \arg \min_{W_1 \in \mathbb{R}^{d \times d_1}, b_1 \in \mathbb{R}^{d_1}} \frac{1}{n} \sum_{i=1}^{n} \ell_{ce}(y_i, F(x_i; (W_i, b_i))_{i=1}^{L})$$

$$= \arg \min_{W_1 \in \mathbb{R}^{d \times d_1}, b_1 \in \mathbb{R}^{d_1}} \frac{1}{n} \sum_{i=1}^{n} \ell_{ce}(y_i, \sigma_L(\cdots \sigma_1(W_1 x_i + b_1) \cdots))$$

▶ Then we pick an optimizer. In this class, we only use gradient descent variants. It is a miracle that this works.
Remark on affine expansion

Note: we are writing

$$x \mapsto \sigma_L \left(\cdots \left(W_2 \sigma_1 \left(W_1 x + b_1 \right) + b_2 \right) \cdots \right),$$

rather than

$$x \mapsto \sigma_L \left(\cdots \left(W_2 \sigma_1 \left(W_1 \left[x \right] \right) \right) \cdots \right).$$

▶ First form seems natural:
With “iterated linear prediction” perspective, it is natural to append 1 at every layer.

▶ Second form is sufficient:
with ReLU, $\sigma_r(1) = 1$, so can pass forward the constant; similar (but more complicated) options exist for other activations.

▶ Why do we do it?
It seems to make the optimization better behaved; this is currently not well understood.
Which architecture?

How do choose an architecture?

▶ How did we choose k in k-nn?

Split data into training and validation, train different architectures and evaluate them on validation, choose architecture with lowest validation error.

▶ As with other methods, this is a proxy to minimizing test error.

Note. ▶ For many standard tasks (e.g., classification of standard vision datasets), people know good architectures.

▶ For new problems and new domains, things are absolutely not settled.
Which architecture?

How do choose an architecture?

▸ How did we choose k in k-nn?
How do choose an architecture?

- How did we choose k in k-nn?
- Split data into training and validation, train different architectures and evaluate them on validation, choose architecture with lowest validation error.
- As with other methods, this is a proxy to minimizing test error.
Which architecture?

How do choose an architecture?

▶ How did we choose k in k-nn?

▶ Split data into training and validation, train different architectures and evaluate them on validation, choose architecture with lowest validation error.

▶ As with other methods, this is a proxy to minimizing test error.

Note.

▶ For many standard tasks (e.g., classification of standard vision datasets), people know good architectures.

▶ For new problems and new domains, things are absolutely not settled.
3. What we have gained: representation power
Sometimes, linear just isn’t enough

Linear predictor:
\[x \mapsto w^T [x_1]. \]
Some blue points misclassified.

ReLU network:
\[x \mapsto W_2 \sigma_r(W_1 x + b_1) + b_2. \]
0 misclassifications!
Classical example: XOR

Classical “XOR problem” (Minsky-Papert-'69).
(Check wikipedia for “AI Winter”.)

Theorem. On this data, any linear classifier (with affine expansion) makes at least one mistake.

Picture proof. Recall: linear classifiers correspond to separating hyperplanes.
Classical example: XOR

Classical “XOR problem” (Minsky-Papert-'69).
(Check wikipedia for “AI Winter”.)

Theorem. On this data, any linear classifier (with affine expansion) makes at least one mistake.

Picture proof. Recall: linear classifiers correspond to separating hyperplanes.

▶ If it splits the blue points, it’s incorrect on one of them.
Classical example: XOR

Classical “XOR problem” (Minsky-Papert-’69).
(Check wikipedia for “AI Winter”.)

Theorem. On this data, any linear classifier (with affine expansion) makes at least one mistake.

Picture proof. Recall: linear classifiers correspond to separating hyperplanes.

- If it splits the blue points, it’s incorrect on one of them.
- If it doesn’t split the blue points, then one halfspace contains the common midpoint, and therefore wrong on at least one red point.
One layer was not enough. How about two?

Theorem (Cybenko ’89, Hornik-Stinchcombe-White ’89, Funahashi ’89, Leshno et al ’92, . . .). Given any continuous function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ and any $\epsilon > 0$, there exist parameters (W_1, b_1, W_2) so that

$$\sup_{\mathbf{x} \in [0,1]^d} \left| f(\mathbf{x}) - W_2 \sigma (W_1 \mathbf{x} + b_1) \right| \leq \epsilon,$$

as long as σ is “reasonable” (e.g., ReLU or sigmoid or threshold).
One layer was not enough. How about two?

Theorem (Cybenko '89, Hornik-Stinchcombe-White '89, Funahashi '89, Leshno et al '92, ...). Given any continuous function \(f : \mathbb{R}^d \to \mathbb{R} \) and any \(\epsilon > 0 \), there exist parameters \((W_1, b_1, W_2)\) so that

\[
\sup_{x \in [0,1]^d} \left| f(x) - W_2 \sigma(W_1 x + b_1) \right| \leq \epsilon,
\]

as long as \(\sigma \) is “reasonable” (e.g., ReLU or sigmoid or threshold).

Remarks.

- Together with XOR example, justifies using nonlinearities.
- Does *not* justify (very) deep networks.
- Only says these networks *exist*, not that we can optimize for them!
4. Network/graph interpretation
Classical network/graph perspective

\[v := \sigma(z), \quad z = \sum_{i=1}^{d} w_{i} x_{i}. \]
Classical network/graph perspective

\[v_j := \sigma(z_j), \quad z_j := \sum_{i=1}^{d} W_{i,j} x_i, \quad j \in \{1, 2\}. \]
Classical network/graph perspective

\[v_j := \sigma(z_j), \quad z_j := \sum_{i=1}^{d} W_{i,j} x_i, \quad j \in \{1, \ldots, k\}. \]
Columns of $\mathbf{W}_1 \in \mathbb{R}^{d \times k}$: params. of original logistic regression models.

Columns of $\mathbf{W}_2 \in \mathbb{R}^{k \times k}$: params. of new logistic regression models to combine predictions of original models.
Multilayer neural network

- Columns of $W_1 \in \mathbb{R}^{d \times k}$: params. of original logistic regression models.
- Columns of $W_2 \in \mathbb{R}^{k \times k}$: params. of new logistic regression models to combine predictions of original models.
- Non-input nodes ("units") compute $z \mapsto \sigma(w^T z + b)$ for some (w, b).

$\sigma(x) = \frac{1}{1 + e^{-x}}$
Multilayer neural network

- Columns of $W_1 \in \mathbb{R}^{d \times k}$: params. of original logistic regression models.
- Columns of $W_2 \in \mathbb{R}^{k \times k}$: params. of new logistic regression models to combine predictions of original models.

- Non-input nodes ("units") compute $z \mapsto \sigma(w^T z + b)$ for some (w, b).
- Non-input and non-output units are called hidden.
General graph-based view

Classical graph-based perspective.

- Network is a directed acyclic graph;
 sources are inputs, sinks are outputs, intermediate nodes compute
 \[z \mapsto \sigma(w^T z + b) \] (with their own \((\sigma, w, b)\)).

- Nodes at distance 1 from inputs are the first layer, distance 2 is second
 layer, and so on.

“Modern” graph-based perspective.

- Edges in the graph can be multivariate, meaning vectors or general
 tensors, and not just scalars.

- Edges will often “skip” layers;
 “layer” is therefore ambiguous.

- Diagram conventions differ;
 e.g., tensorflow graphs include nodes for parameters.
Current-day networks: many layers...

Taken from ResNet paper. 2015.

Taken from Nguyen et al, 2017.
5. pytorch quickstart
Defining networks in pytorch

```python
net1 = torch.nn.Sequential(
    torch.nn.Linear(2, 3, bias = True),
    torch.nn.Linear(3, 4, bias = True),
    torch.nn.Linear(4, 2, bias = True),
)

net2 = torch.nn.Sequential(
    torch.nn.Linear(2, 3, bias = True),
    torch.nn.ReLU(),
    torch.nn.Linear(3, 4, bias = True),
    torch.nn.ReLU(),
    torch.nn.Linear(4, 2, bias = True),
)

for net in (net1, net2):
    print(net(torch.randn(2))) # works
    print(net(torch.randn(1, 2))) # also works
    print(net(torch.randn(10, 2))) # also works
    try:
        print(net(torch.randn(2, 1))) # fails!
    except Exception as e:
        print(e)
```
def fit1(net, X, y, n_epoch = 1000, stepsize = 0.01):
 for epoch in range(n_epoch):
 loss = torch.nn.CrossEntropyLoss()(net(X), y)
 loss.backward()
 with torch.no_grad():
 for P in net.parameters():
 P -= stepsize * P.grad
 P.grad.zero()
 # can alternatively do net.zero_grad()

def fit2(net, X, y, n_epoch = 1000, stepsize = 0.01):
 sgd = torch.optim.SGD(net.parameters(), lr = stepsize)
 for epoch in range(n_epoch):
 loss = torch.nn.CrossEntropyLoss()(net(X), y)
 loss.backward()
 sgd.step()
 sgd.zero_grad()

for net in (net1, net2):
 for fit in (fit1, fit2):
 fit(net, torch.randn(100, 2), torch.randint(2, (100,), dtype = torch.long))
6. Summary (of part 1)
Summary (of part 1)

- Basic deep networks via iterated logistic regression.
- Deep network terminology: parameters, activations, layers, nodes.
- Standard choices: biases, ReLU nonlinearity, cross-entropy loss.
- Basic optimization: magic gradient descent black boxes.
- Basic pytorch code.