Linear regression

CS 446 / ECE 449

2021-02-03 23:48:16 -0600 (82ce512)
Plan for today

- Linear regression setup revisited.
- Normal equations, SVD, and pseudoinverse.
- Example (if time).
1. Clean/augment data (lecture 10?).
2. Pick model/architecture (anything from lectures 2-13).
3. Pick a loss function measuring model fit to data.
4. Run a gradient descent variant to fit model to data.
5. Tweak 1-4 until training error is small.
6. Tweak 1-5, possibly reducing model complexity, until testing error is small.

Is that all of ML?
No, but these days it’s much of it!
Linear regression — basic setup

1. Start from training data \(((x_i, y_i))_{i=1}^{n}\), with \(x_i \in \mathbb{R}^d\) and \(y_i \in \mathbb{R}\).

2. Model is a linear predictor: pick \(w \in \mathbb{R}^d\) with

 \[x_i \mapsto w^T x_i \approx y_i.\]

3. Loss function is squared loss (standard regression loss):

 \[\ell(w^T x_i, y_i) = \frac{1}{2}(w^T x_i - y_i)^2.\]

 We will minimize the empirical risk (average loss over training examples):

 \[
 \hat{R}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w^T x_i, y_i) = \frac{1}{2n} \|Xw - y\|^2 \quad \text{where} \quad X := \begin{bmatrix}
 \leftarrow x_1^T \rightarrow \\
 \vdots \\
 \leftarrow x_n^T \rightarrow
 \end{bmatrix}.
 \]

4. Basic method: gradient descent. Set \(w_0 = 0\), and thereafter

 \[w_{i+1} := w_i - \eta \nabla \hat{R}(w_i) = w_i - \frac{\eta}{n} X^T (Xw_i - y),\]

 where \(\eta\) is a learning rate (step size).
2. **Model** is a linear predictor: pick $\mathbf{w} \in \mathbb{R}^d$ with

$$x_i \mapsto \mathbf{w}^\top x_i \approx y_i.$$

- Our model/architecture/function class is $\{x \mapsto \mathbf{w}^\top x : \mathbf{w} \in \mathbb{R}^d\}$.

 For each $\mathbf{w} \in \mathbb{R}^d$, we have another predictor.

- This is a simple model; we’ll build off of it to get more powerful ones!

- This model is insufficient for complicated tasks, but often does well, and forms a good baseline.
3. Loss function is squared loss (standard regression loss):

\[\ell(w^T x_i, y_i) = \frac{1}{2} (w^T x_i - y_i)^2. \]

We will minimize the empirical risk:

\[\hat{R}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w^T x_i, y_i) = \frac{1}{2n} \|Xw - y\|^2. \]

- Regression towards the mean: if \(x_i = 1 \in \mathbb{R}^1 \) for all \(i \), then

\[\arg \min_{w \in \mathbb{R}^1} \|Xw - y\|^2 = \frac{1}{n} \sum_{i=1}^{n} y_i. \]

Seems a reasonable notion of loss/error.

- There are many choices for \(\ell \). Next lecture we’ll use logistic loss

\[\ell(\hat{y}, y) = \ln(1 + \exp(-\hat{y}y)). \]

This and squared loss are the most common.
4. Basic method: gradient descent. Set \(w_0 = 0 \), and thereafter

\[
\begin{align*}
 w_{i+1} &:= w_i - \eta \nabla \hat{R}(w_i) = w_i - \frac{\eta}{n} X^T (Xw_i - y),
\end{align*}
\]

where \(\eta \) is a learning rate (step size).

- In a few lectures, we’ll see that this globally minimizes \(\hat{R} \).
- We’ll spend most of this lecture on other solutions via SVD.
We want to find \hat{w} so that

$$2n\hat{R}(\hat{w}) = \|X\hat{w} - y\|^2 = \min_{w \in \mathbb{R}^d} \|Xw - y\|^2.$$

Idea from calculus: set gradient to zero and solve:

$$0 = \nabla_w \|Xw - y\|^2 = 2X^T(Xw - y),$$

meaning we want \hat{w} so that

$$X^TX\hat{w} = X^Ty.$$
We want to find \hat{w} so that

$$2n\hat{R}(\hat{w}) = \|X\hat{w} - y\|^2 = \min_{w \in \mathbb{R}^d} \|Xw - y\|^2.$$

Idea from calculus: set gradient to zero and solve:

$$0 = \nabla_w \|Xw - y\|^2 = 2X^T (Xw - y),$$

meaning we want \hat{w} so that

$$X^TXw = X^Ty.$$

These are called the normal equations.
The normal equations are the system of linear equalities

\[X^T X \hat{w} = X^T y. \]

Proposition. \(\hat{w} \) satisfies \(\hat{R}(\hat{w}) = \min_w \hat{R}(w) \) iff \(\hat{w} \) satisfies the normal equations.
The normal equations are the system of linear equalities

\[X^T X w = X^T y. \]

Proposition. \(\hat{w} \) satisfies \(\hat{R}(\hat{w}) = \min_w \hat{R}(w) \) iff \(\hat{w} \) satisfies the normal equations.

Proof (one direction). Consider \(w \) with \(X^T X w = X^T y \), and any \(w' \); then

\[\| Xw' - y \|^2 = \| Xw' - Xw + Xw - y \|^2 \]

\[= \| Xw' - Xw \|^2 + 2(Xw' - Xw)^T(Xw - y) + \| Xw - y \|^2. \]

Since

\[(Xw' - Xw)^T(Xw - y) = (w' - w)^T(X^T Xw - X^T y) = 0, \]

then

\[\| Xw' - y \|^2 = \| Xw' - Xw \|^2 + \| Xw - y \|^2 \geq \| Xw - y \|^2. \]

Later we’ll get a general version by convexity, but it’s nice that we can check this directly so easily!
The normal equations are the system of linear equalities
\[X^T X \hat{w} = X^T y. \]

Proposition. \(\hat{w} \) satisfies \(\hat{R}(\hat{w}) = \min_w \hat{R}(w) \) iff \(\hat{w} \) satisfies the normal equations.
The normal equations are the system of linear equalities

\[X^T X \hat{w} = X^T y. \]

Proposition. \(\hat{w} \) satisfies \(\mathcal{R}(\hat{w}) = \min_w \mathcal{R}(w) \) iff \(\hat{w} \) satisfies the normal equations.

How do we solve for \(\hat{w} \)?

- If \(X^T X \) is invertible, we can use \((X^T X)^{-1} X^T y \).
- In general, we will use the **SVD**.
The SVD (Singular Value Decomposition).

Let $M \in \mathbb{R}^{n \times d}$ be given. $((s_i, u_i, v_i))_{i=1}^r$ is an SVD of M if:

▶ M has rank r;
▶ $s_1 \geq s_2 \cdots \geq s_r > 0$;
▶ $(u_i)_{i=1}^r$ are orthonormal (orthogonal and unit length), and span the column space of M;
▶ $(v_i)_{i=1}^r$ are orthonormal, and span the row space of M.
▶ $M = \sum_i s_i u_i v_i^T$.

The SVD always exists, and is real-valued. (When do real eigendecompositions not exist?)

The ordered tuple (s_1, \ldots, s_r) is unique, but the SVD is in general not unique (why not?).

For $k < r$, the low rank approximation $\sum_{i=1}^k s_i u_i v_i^T \approx M$ has many applications (wait for the PCA lecture).
The SVD (Singular Value Decomposition).

Let \(M \in \mathbb{R}^{n \times d} \) be given. \(((s_i, u_i, v_i))_{i=1}^{r} \) is an SVD of \(M \) if:

- \(M \) has rank \(r \);
- \(s_1 \geq s_2 \cdots \geq s_r > 0 \);
- \((u_i)_{i=1}^{r}\) are orthonormal (orthogonal and unit length), and span the column space of \(M \);
- \((v_i)_{i=1}^{r}\) are orthonormal, and span the row space of \(M \).
- \(M = \sum_i s_i u_i v_i^T \).

- The SVD always exists, and is real-valued.
 (When do real eigendecompositions not exist?)
- The ordered tuple \((s_1, \ldots, s_r)\) is unique, but the SVD is in general not unique (why not?).
- For \(k < r \), the low rank approximation \(\sum_{i=1}^{k} s_i u_i v_i^T \approx M \) has many applications (wait for the PCA lecture).
Pseudoinverse.

Given SVD $M = \sum_i s_i u_i v_i^T$, the pseudoinverse is

$$M^+ := \sum_{i=1}^r \frac{1}{s_i} v_i u_i^T.$$
Given SVD \(M = \sum_i s_i u_i v_i^T \), the pseudoinverse is

\[
M^+ := \sum_{i=1}^{r} \frac{1}{s_i} v_i u_i^T.
\]

- The SVD may fail to be unique, but \(M^+ \) is unique.
- \(MM^+ = \sum_{i=1}^{r} u_i u_i^T \) and \(M^+ M = \sum_{i=1}^{r} v_i v_i^T \); in general, neither is an identity matrix. (Consider the case \(M = e_1 e_1^T \).)
- On the other hand,

\[
M M^+ M =
\]

\[
M^+ M M^+ =
\]

- If \(M^{-1} \) exists, then \(M^+ = M^{-1} \).
- If \(M = 0 \), then \(r = 0 \) and \(M^+ = 0 \).
Pseudoinverse.

Given SVD $\mathbf{M} = \sum_i s_i \mathbf{u}_i \mathbf{v}_i^T$, the pseudoinverse is

$$\mathbf{M}^+ := \sum_{i=1}^r \frac{1}{s_i} \mathbf{v}_i \mathbf{u}_i^T.$$

- The SVD may fail to be unique, but \mathbf{M}^+ is unique.
- $\mathbf{M} \mathbf{M}^+ = \sum_{i=1}^r \mathbf{u}_i \mathbf{u}_i^T$ and $\mathbf{M}^+ \mathbf{M} = \sum_{i=1}^r \mathbf{v}_i \mathbf{v}_i^T$; in general, neither is an identity matrix. (Consider the case $\mathbf{M} = \mathbf{e}_1 \mathbf{e}_1^T$.)
- On the other hand,

$$\mathbf{M} \mathbf{M}^+ \mathbf{M} = \left(\sum_{i=1}^r s_i \mathbf{u}_i \mathbf{v}_i^T \right) \left(\sum_{j=1}^r \frac{1}{s_j} \mathbf{v}_j \mathbf{u}_j^T \right) \left(\sum_{k=1}^r s_k \mathbf{u}_k \mathbf{v}_k^T \right) = \mathbf{M},$$

$$\mathbf{M}^+ \mathbf{M} \mathbf{M}^+ = \left(\sum_{i=1}^r \frac{1}{s_i} \mathbf{v}_i \mathbf{u}_i^T \right) \left(\sum_{j=1}^r s_j \mathbf{u}_j \mathbf{v}_j^T \right) \left(\sum_{k=1}^r \frac{1}{s_k} \mathbf{v}_k \mathbf{u}_k^T \right) = \mathbf{M}^+.$$

- If \mathbf{M}^{-1} exists, then $\mathbf{M}^+ = \mathbf{M}^{-1}$.
- If $\mathbf{M} = \mathbf{0}$, then $r = 0$ and $\mathbf{M}^+ = \mathbf{0}$.

Given a least squares problem $\hat{\mathcal{R}}(w) = \|Xw - y\|^2/(2n)$, the OLS solution

$$\hat{w}_{\text{ols}} = X^+ y$$

satisfies the normal equations (whereby $\hat{\mathcal{R}}(\hat{w}_{\text{ols}}) = \min_w \hat{\mathcal{R}}(w)$).
OLS (Ordinary Least Squares) solution via SVD.

Given a least squares problem \(\hat{R}(w) = \|Xw - y\|^2/(2n) \), the OLS solution

\[
\hat{w}_{\text{ols}} = X^+ y
\]

satisfies the normal equations (whereby \(\hat{R}(\hat{w}_{\text{ols}}) = \min_w \hat{R}(w) \)).

Easy to check: writing \(X = \sum_{i=1}^{r} s_i u_i v_i^\top \),

\[
X^T X \hat{w}_{\text{ols}} = X^T X X^+ y
\]

\[
= \left(\sum_{i=1}^{r} s_i v_i u_i^\top \right) \left(\sum_{j=1}^{r} s_j u_j v_j^\top \right) \left(\sum_{k=1}^{r} \frac{1}{s_k} v_k u_k^\top \right) y
\]

\[
= X^T y.
\]
SVD $M = \sum_i s_i u_i v_i^T$ and orthonormal bases.

We can extend $(u_i)_{i=1}^r$ and $(v_i)_{i=1}^r$ to full orthonormal bases for \mathbb{R}^n and \mathbb{R}^d respectively: write $M \in \mathbb{R}^{n \times d}$ as

$$
\begin{bmatrix}
\uparrow & \uparrow & \uparrow & \uparrow \\
| & \uparrow & | & \uparrow & | & \uparrow \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\end{bmatrix}
\begin{bmatrix}
s_1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & s_r \\
\end{bmatrix}
\begin{bmatrix}
\uparrow & \uparrow & \uparrow & \uparrow \\
| & \uparrow & | & \uparrow & | & \uparrow \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\end{bmatrix}
\begin{bmatrix}
v_1 & \cdots & v_r & v_{r+1} & \cdots & v_d \\
\end{bmatrix}^T.
$$

The old parts span the column and row spaces of M; the new vectors span the left and right nullspaces. Some call this a “full” SVD.
SVD and relationship to eigenvalues.

Note

\[
\mathbf{M} \mathbf{M}^T = \sum_{i=1}^{r} s_i \mathbf{u}_i \mathbf{v}_i^T \sum_{j=1}^{r} s_j \mathbf{v}_j \mathbf{u}_j^T = \sum_{i=1}^{r} s_i^2 \mathbf{u}_i \mathbf{u}_i^T,
\]

thus left singular vectors \(\mathbf{u}_i \) for \(i = 1 \) are top eigenvectors of \(\mathbf{M} \mathbf{M}^T \), with eigenvalues \(s_2 \geq \cdots \geq s_r \).

Similarly,

\[
\mathbf{M}^T \mathbf{M} = \sum_{i=1}^{r} s_i \mathbf{v}_i \mathbf{u}_i^T \sum_{j=1}^{r} s_j \mathbf{u}_j \mathbf{v}_j^T = \sum_{i=1}^{r} s_i^2 \mathbf{v}_i \mathbf{v}_i^T,
\]

obtaining right singular vectors from \(\mathbf{M} \mathbf{M}^T \).
SVD and relationship to eigenvalues.

Note

\[MM^T = \sum_{i=1}^{r} s_i u_i v_i^T \sum_{j=1}^{r} s_j v_j u_j^T = \sum_{i=1}^{r} s_i^2 u_i u_i^T, \]

thus left singular vectors \((u)_{i=1}^{r}\) are top eigenvectors of \(MM^T\), with eigenvalues \(s_1^2 \geq \cdots \geq s_r^2\).

Similarly,

\[M^T M = \sum_{i=1}^{r} s_i v_i u_i^T \sum_{j=1}^{r} s_j u_j v_j^T = \sum_{i=1}^{r} s_i^2 v_i v_i^T, \]

obtaining right singular vectors from \(M^T M\).
Summary on least squares solutions

We want to approximately solve the empirical risk minimization problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \hat{\mathcal{R}}(\mathbf{w}) = \min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{2n} \| \mathbf{X} \mathbf{w} - \mathbf{y} \|^2.$$

Three approaches:

1. Gradient descent: \(\mathbf{w}_0 := 0 \), thereafter \(\mathbf{w}_{i+1} := \mathbf{w} - \eta \nabla \hat{\mathcal{R}}(\mathbf{w}_i) \).

2. Pick any \(\hat{\mathbf{w}} \) satsifying the normal equations

\[
\mathbf{X}^\top \mathbf{X} \mathbf{w} = \mathbf{X}^\top \mathbf{y}.
\]

3. Use the ordinary least squares (OLS) solution \(\hat{\mathbf{w}}_{\text{ols}} = \mathbf{X}^+ \mathbf{y} \).
Summary on least squares solutions

We want to approximately solve the **empirical risk minimization problem**

\[
\min_{w \in \mathbb{R}^d} \hat{R}(w) = \min_{w \in \mathbb{R}^d} \frac{1}{2n} \|Xw - y\|^2.
\]

Three approaches:

1. **Gradient descent**: \(w_0 := 0 \), thereafter \(w_{i+1} := w - \eta \nabla \hat{R}(w_i) \).
2. Pick any \(\hat{w} \) satisfying the **normal equations**
 \[
 X^T X w = X^T y.
 \]
3. Use the **ordinary least squares (OLS)** solution \(\hat{w}_{\text{ols}} = X^+ y \).

(Side note: are these different?...)

Example: Old Faithful geyser (Yellowstone)
Task: Predict time of next eruption.
Time between eruptions

Source data: start and end times \((a_i, b_i)\) of \(n = 136\) eruptions.

\[
\begin{array}{ccccc}
 a_0 & b_0 & a_1 & b_1 & a_2 & b_2 & a_3 & b_3 & \ldots \\
\end{array}
\]

Let's pre-process: form time between eruptions \(y_i = a_i + 1 - b_i\).

Reformulated task: to estimate next eruption, find last end time \(t\), compute \(\hat{y}\), and output \(t + \hat{y}\).

Let's use linear regression.

- Set \(x_i = 1\) and the OLS solution is the mean: \(\hat{y} = \frac{1}{136} \sum_{i=1}^{136} y_i = 70.7941\).
- Can we do better with another \(x_i\)?
Time between eruptions

Source data: start and end times \((a_i, b_i)\) of \(n = 136\) eruptions.

\[
\begin{array}{cccccccc}
\hspace{1cm} & a_0 & b_0 & a_1 & b_1 & a_2 & b_2 & a_3 & b_3 & \ldots \\
\leftarrow & - & - & - & - & - & - & - & - & - & \rightarrow \\
& Y_1 & & Y_2 & & Y_3 & & & &
\end{array}
\]

Let’s pre-process: form time between eruptions \(y_i := a_{i+1} - b_i\).
Time between eruptions

Source data: start and end times \((a_i, b_i)\) of \(n = 136\) eruptions.

\[
\ldots \ a_{n-1} \ b_{n-1} \ a_n \ b_n \ \ldots \quad \text{data} \quad \ldots \ t
\]

Let’s pre-process: form time between eruptions \(y_i := a_{i+1} - b_i\).

Reformulated task:

to estimate next eruption, find last end time \(t\), compute \(\hat{y}\), and output \(t + \hat{y}\).
Time between eruptions

Source data: start and end times \((a_i, b_i)\) of \(n = 136\) eruptions.

Let’s pre-process: form time between eruptions \(y_i := a_{i+1} - b_i\).

Reformulated task:

to estimate next eruption, find last end time \(t\), compute \(\hat{y}\), and output \(t + \hat{y}\).

Let’s use linear regression.

- Set \(x_i = 1\) and the OLS solution is the mean:

\[
\hat{y} = \frac{1}{136} \sum_{i=1}^{136} y_i = 70.7941.
\]

- Can we do better with another \(x_i\)?
Eruption length and time to eruption are correlated.

Let choose $x_i := [b_i - a_i]$.
Eruption length and time to eruption are correlated.

Let choose \(x_i := \left[b_i - a_i \right] \).

(Side note: the extra “1” will be discussed extensively later.)
1. Form pairs \(x_i := [b_i - a_i] \), and matrix

\[
X := \begin{bmatrix}
\leftarrow & x_1^T & \rightarrow \\
\vdots & \vdots & \vdots \\
\leftarrow & x_n^T & \rightarrow \\
\end{bmatrix} = \begin{bmatrix}
b_1 - a_1 & 1 \\
\vdots & \vdots \\
b_n - a_n & 1 \\
\end{bmatrix} \in \mathbb{R}^{n \times 2}.
\]

Form labels \(y \in \mathbb{R}^n \), \(y_i := a_{i+1} - b_i \).

2. Choose OLS solution \(\hat{w}_{\text{ols}} := X^+ y \).

3. Given a new eruption \((a, b)\), estimate next eruption time \(b + w^T [b-a] \).
“pytorch meta-algorithm” on Old Faithful data

1. Clean/augment data.
 From \((a_i, b_i)\), form \(x'_i = (1,)\) or \(x_i = (b_i - a_i, 1)\), and \(y_i = a_i - b_{i-1}\).

2. Pick model/architecture (anything from lectures 2-13).
 Linear predictor.

3. Pick a loss function measuring model fit to data.
 Squared loss.

4. Run a gradient descent variant to fit model to data.

5. Tweak 1-4 until training error is small.
 \(x'_i\) was bad, so we added a feature and got \(x_i\).

6. Tweak 1-5, possibly reducing model complexity, until testing error is small.
 We didn’t try this!
Summary for today

- Linear regression setup revisited.
- Normal equations, SVD, and pseudoinverse.
- Example (if time).
(Appendix.)
The normal equations are the system of linear equalities

\[X^T X w = X^T y. \]

Proposition. \(\hat{w} \) satisfies \(\hat{R}(\hat{w}) = \min_w \hat{R}(w) \) iff \(\hat{w} \) satisfies the normal equations.
The normal equations are the system of linear equalities

\[X^T X w = X^T y. \]

Proposition. \(\hat{w} \) satisfies \(\hat{R}(\hat{w}) = \min_{w} \hat{R}(w) \) iff \(\hat{w} \) satisfies the normal equations.

Proof (other direction).
Suppose \(w \) is optimal; since \(\hat{w}_{ols} \) satisfies the normal equations, then expanding the square as in the proof of the other direction gives

\[\| Xw - y \|^2 = \| Xw - X\hat{w}_{ols} \|^2 + \| X\hat{w}_{ols} - y \|^2. \]

Since \(w \) and \(\hat{w}_{ols} \) are optimal, then \(\hat{R}(w) = \hat{R}(\hat{w}_{ols}) \), so the preceding implies
The normal equations are the system of linear equalities

\[X^T X w = X^T y. \]

Proposition. \(\hat{w} \) satisfies \(\hat{R}(\hat{w}) = \min_w \hat{R}(w) \) iff \(\hat{w} \) satisfies the normal equations.

Proof (other direction).
Suppose \(w \) is optimal; since \(\hat{w}_{\text{ols}} \) satisfies the normal equations, then expanding the square as in the proof of the other direction gives

\[\| Xw - y \|^2 = \| Xw - X\hat{w}_{\text{ols}} \|^2 + \| X\hat{w}_{\text{ols}} - y \|^2. \]

Since \(w \) and \(\hat{w}_{\text{ols}} \) are optimal, then \(\hat{R}(w) = \hat{R}(\hat{w}_{\text{ols}}) \), so the preceding implies

\[0 = \| Xw - X\hat{w}_{\text{ols}} \|^2 = \| X(w - \hat{w}_{\text{ols}}) \|^2, \]

therefore \(X(w - \hat{w}_{\text{ols}}) = 0 \) and \(Xw = X\hat{w}_{\text{ols}} \), which by the normal equations for \(\hat{w}_{\text{ols}} \) means

\[X^T y = X^T X\hat{w}_{\text{ols}} = X^T X w, \]

thus \(w \) satisfies the normal equations. \(\square \)
Geometric interpretation of least squares ERM

Let \(a_j \in \mathbb{R}^n \) be the \(j \)-th column (not row!) of matrix \(X \in \mathbb{R}^{n \times d} \), so

\[
X = \begin{bmatrix}
\leftarrow x_1^\top & \rightarrow \\
\vdots & \\
\leftarrow x_n^\top & \rightarrow \\
\end{bmatrix}
= \begin{bmatrix}
\uparrow & \cdots & \uparrow \\
\downarrow & \cdots & \downarrow \\
\end{bmatrix}.
\]

Minimizing \(\|Aw - b\|_2^2 \) means finding \(\hat{b} \in \text{span}(a_1, \ldots, a_d) \) closest to \(b \).

Solution \(\hat{b} \) is orthogonal projection of \(b \) onto \(\text{range}(A) = \{Aw : w \in \mathbb{R}^d\} \).

\(\hat{b} \) is uniquely determined; indeed, \(\hat{b} = AA^+b = \sum_{i=1}^{r} u_i u_i^\top b \).

If \(r = \text{rank}(A) < d \), then one way to write \(\hat{b} \) as linear combination of \(a_1, \ldots, a_d \).

If \(\text{rank}(A) < d \), then ERM solution is not unique.

To get \(w \) from \(\hat{b} \): solve system of linear equations \(Aw = \hat{b} \).
Geometric interpretation of least squares ERM

Let $a_j \in \mathbb{R}^n$ be the j-th column (not row!) of matrix $X \in \mathbb{R}^{n \times d}$, so

$$X = \begin{bmatrix}
\leftarrow & x_1^T & \rightarrow \\
\vdots & & \\
\leftarrow & x_n^T & \rightarrow
\end{bmatrix} = \begin{bmatrix}
\uparrow & \cdots & \uparrow \\
\downarrow & \cdots & \downarrow \\
\end{bmatrix}
= \begin{bmatrix}
\uparrow & \cdots & \uparrow \\
\downarrow & \cdots & \downarrow \\
\end{bmatrix} = \begin{bmatrix}
\uparrow & \cdots & \uparrow \\
\downarrow & \cdots & \downarrow \\
\end{bmatrix}.
$$

Minimizing $\|A\hat{w} - b\|_2^2$ means finding $\hat{b} \in \text{span}(a_1, \ldots, a_d)$ closest to b.
Geometric interpretation of least squares ERM

Let \(a_j \in \mathbb{R}^n \) be the \(j \)-th column (not row!) of matrix \(X \in \mathbb{R}^{n \times d} \), so

\[
X = \begin{bmatrix}
\leftarrow x_1^\top \rightarrow \\
\vdots \\
\leftarrow x_n^\top \rightarrow
\end{bmatrix} = \begin{bmatrix}
\uparrow \cdots \uparrow \\
\downarrow a_1 \cdots \downarrow a_d
\end{bmatrix}.
\]

Minimizing \(\| Aw - b \|_2^2 \) means finding \(\hat{b} \in \text{span}(a_1, \ldots, a_d) \) closest to \(b \).

Solution \(\hat{b} \) is **orthogonal projection** of \(b \) onto \(\text{range}(A) = \{ Aw : w \in \mathbb{R}^d \} \).
Geometric interpretation of least squares ERM

Let \(a_j \in \mathbb{R}^n \) be the \(j \)-th column (not row!) of matrix \(X \in \mathbb{R}^{n \times d} \), so

\[
X = \begin{bmatrix}
\leftarrow \ x_1^T \rightarrow \\
\vdots \\
\leftarrow \ x_n^T \rightarrow
\end{bmatrix} = \begin{bmatrix}
\uparrow & \cdots & \uparrow \\
\downarrow \ a_1 & \cdots & \downarrow a_d
\end{bmatrix}.
\]

Minimizing \(\| Aw - b \|_2^2 \) means finding \(\hat{b} \in \text{span}(a_1, \ldots, a_d) \) closest to \(b \).

Solution \(\hat{b} \) is **orthogonal projection** of \(b \) onto \(\text{range}(A) = \{ Aw : w \in \mathbb{R}^d \} \).

\[\Rightarrow \hat{b} \text{ is uniquely determined; indeed, } \hat{b} = AA^+ b = \sum_{i=1}^{r} u_i u_i^T b. \]
Geometric interpretation of least squares ERM

Let $a_j \in \mathbb{R}^n$ be the j-th column (not row!) of matrix $X \in \mathbb{R}^{n \times d}$, so

$$X = \begin{bmatrix} \leftarrow x_1^\top \rightarrow \\ \vdots \\ \leftarrow x_n^\top \rightarrow \end{bmatrix} = \begin{bmatrix} \uparrow & \cdots & \uparrow \\ a_1 & \cdots & a_d \downarrow & \cdots & \downarrow \end{bmatrix}.$$

Minimizing $\|Aw - b\|^2_2$ means finding $\hat{b} \in \text{span}(a_1, \ldots, a_d)$ closest to b.

Solution \hat{b} is orthogonal projection of b onto $\text{range}(A) = \{Aw : w \in \mathbb{R}^d\}$.

- \hat{b} is uniquely determined; indeed, $\hat{b} = AA^+ b = \sum_{i=1}^r u_i u_i^\top b$.

- If $r = \text{rank}(A) < d$, then >1 way to write \hat{b} as linear combination of a_1, \ldots, a_d.

\implies \hat{b} is orthogonal projection of b onto $\text{span}(a_1, a_2)$.

\implies $\hat{b} = \frac{1}{2} a_1 + \frac{1}{2} a_2$.
Geometric interpretation of least squares ERM

Let $a_j \in \mathbb{R}^n$ be the j-th column (not row!) of matrix $X \in \mathbb{R}^{n \times d}$, so

$$X = \begin{bmatrix} \leftarrow & x_1^\top & \rightarrow \\ \vdots \\ \leftarrow & x_n^\top & \rightarrow \end{bmatrix} = \begin{bmatrix} \uparrow & \cdots & \uparrow \\ \downarrow & \cdots & \downarrow \end{bmatrix} = \begin{bmatrix} a_1 \\ \vdots \\ a_d \end{bmatrix}.$$

Minimizing $\|Ax - b\|_2^2$ means finding $\hat{b} \in \text{span}(a_1, \ldots, a_d)$ closest to b.

Solution \hat{b} is orthogonal projection of b onto $\text{range}(A) = \{Aw : w \in \mathbb{R}^d\}$.

- \hat{b} is uniquely determined; indeed, $\hat{b} = AA^+b = \sum_{i=1}^r u_i u_i^\top b$.
- If $r = \text{rank}(A) < d$, then >1 way to write \hat{b} as linear combination of a_1, \ldots, a_d.

If $\text{rank}(A) < d$, then ERM solution is not unique.
Geometric interpretation of least squares ERM

Let $a_j \in \mathbb{R}^n$ be the j-th column (not row!) of matrix $X \in \mathbb{R}^{n \times d}$, so

$$X = \begin{bmatrix}
\leftarrow & x_1^\top & \rightarrow \\
\vdots & \hspace{1cm} & \\
\leftarrow & x_n^\top & \rightarrow \\
\end{bmatrix} = \begin{bmatrix}
\uparrow & \hspace{1cm} & \uparrow \\
\downarrow & \hspace{1cm} & \downarrow \\
a_1 & \cdots & a_d \\
\end{bmatrix}.$$

Minimizing $\|Aw - b\|_2^2$ means finding $\hat{b} \in \text{span}(a_1, \ldots, a_d)$ closest to b.

Solution \hat{b} is **orthogonal projection** of b onto $\text{range}(A) = \{Aw : w \in \mathbb{R}^d\}$.

- \hat{b} is uniquely determined; indeed, $\hat{b} = AA^+ b = \sum_{i=1}^r u_i u_i^\top b$.
- If $r = \text{rank}(A) < d$, then >1 way to write \hat{b} as linear combination of a_1, \ldots, a_d.

If $\text{rank}(A) < d$, then **ERM solution is not unique**.

To get w from \hat{b}:
solve system of linear equations $Aw = \hat{b}$.

23 / 25
Computing the SVD

Typical solver is an iterative, greedy method. For more information, see the excellent data science book by Blum, Hopcroft, Kannan.
Why include GD, since pseudoinverse seems sufficient?

- GD is easy to implement, pseudoinverse more painful.
- Pseudoinverse after all implemented as an iterative solver.
- GD generalizes to other cases of squared loss (e.g., deep network training with squared loss).