covers various pytorch basics; intended for interactive use. –matus

1 tensor operations

```
import torch
# torch has its own PRNG seeds.
# setting it here so notebook is deterministic.
torch.manual_seed(0)
```

```
<torch._C.Generator at 0x7fb510b134f0>
```

```
# create a non-inclusive range..
torch.arange(8)
```

```
tensor([0, 1, 2, 3, 4, 5, 6, 7])
```

```
# ..just like a regular python non-inclusive range
torch.tensor(range(8))
```

```
tensor([0, 1, 2, 3, 4, 5, 6, 7])
```

```
# a similar routine, subdividing an interval equally
torch.linspace(0, 1)
```

```
tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])
```

```
# standard arithmetic operations act coordinate-wise
xs = torch.linspace(0, 1, 5)
print(1, xs ** 2)  # coordinate-wise squaring
print(2, xs * xs)  # coordinate-wise multiplication
print(3, (xs ** 2 - xs * xs) < 1e-16)  # compare the above,
print(4, (2.7182818 * xs).log())  # coordinate-wise multiplication and ln
```

1 tensor([0.0000, 0.0625, 0.2500, 0.5625, 1.0000])
2 tensor([0.0000, 0.0625, 0.2500, 0.5625, 1.0000])
3 tensor([True, True, True, True, True])
4 tensor([-inf, -0.3863, 0.3069, 0.7123, 1.0000])
PyTorch Tensors Aren't Just Floating Point

```python
print(1, torch.linspace(0, 1, 5).dtype)
print(2, torch.arange(5).dtype)
print(3, (torch.arange(5) / 10).dtype)
print(4, (torch.arange(5) // 10).dtype)
print(5, (torch.arange(5) == 0).dtype)
```

1 torch.float32
2 torch.int64
3 torch.float32
4 torch.int64
5 torch.bool

/home/matus/.local/lib/python3.9/site-packages/torch/_tensor.py:575:
UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.
To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at /pytorch/aten/src/ATen/native/BinaryOps.cpp:467.)

```python
return torch.floor_divide(self, other)
```

Arithmetic Operations Generally Convert Between Types

```python
print(1, torch.arange(5) * torch.arange(5))
print(2, torch.arange(5) * (torch.arange(5) / 1))
print(3, torch.arange(5) + (torch.arange(5) / 1))
print(4, (torch.arange(5) >= 3))
print(5, 2 + (torch.arange(5) >= 3))
```

1 tensor([0, 1, 4, 9, 16])
2 tensor([0., 1., 4., 9., 16.])
3 tensor([0., 2., 4., 6., 8.])
4 tensor([False, False, False, True, True])
5 tensor([2, 2, 2, 3, 3])

Not All Types Support All Operations

```python
try:
    # following does manual type conversion
    print(1, torch.arange(5).type(torch.float32).exp())
    print(2, torch.arange(5).exp()) # wow this has changed over time!
except RuntimeError as E:
    print(f"Got exception: '{E}'")
```

1 tensor([1.0000, 2.7183, 7.3891, 20.0855, 54.5981])
2 tensor([1.0000, 2.7183, 7.3891, 20.0855, 54.5981])

Here Are Some Basic Operations on Matrix Shapes

```python
ns = torch.arange(12)
```
print(1, ns)
print(2, ns.reshape(3,-1))
.view() is similar to .reshape() but reuses storage;
we'll revisit it later.
print(3, ns.view(3,-1))

1 tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
2 tensor([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
3 tensor([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])

10:
We can also reshape into 3 axes
print(1, ns.reshape(2,2,3))
.reshape() and .view() also understand "-1" which means
"choose the appropriate size so that this works out".
print(2, ns.reshape(-1,2,3).shape)

1 tensor([[0, 1, 2],
 [3, 4, 5]],
 [[6, 7, 8],
 [9, 10, 11]])
2 torch.Size([2, 2, 3])

11:
torch also has "0 axis" (or "0 order") tensors/"arrays".
these are convenient because they still support .exp(), etc.
e = torch.tensor(2.7182818, dtype = torch.float32)
print(1, e, e.shape, e.log(), e.sin())
method .item() extracts a python number
print(2, e, e.item())
lol:
print(3, torch.tensor(2.7182818, dtype = torch.float64).item())
try:
 # .item() only works on single-element tensors
 print(4, torch.zeros(1,1,1,1).item())
 print(5, torch.zeros(2).item())
except ValueError as E:
 print(6, f"Got exception: '{E}'")

1 tensor(2.7183) torch.Size([]) tensor(1.) tensor(0.4108)
2 tensor(2.7183) 2.7182817459106445
3 2.7182818
4 0.0
6 Got exception: 'only one element tensors can be converted to Python scalars'
back to larger tensors,
some (but not all) operations complain about size mismatch.

```python
try:
    vs = torch.arange(6).reshape(2, 3)
    print(1, vs + vs)
    print(2, vs + vs.T)
except RuntimeError as E:
    print(3, f"Got exception: '{E}'")
```

1 tensor([[0, 2, 4],
 [6, 8, 10]])
3 Got exception: 'The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 1'

but some operations _do_ succeed with mismatched shapes!

```python
vs = torch.arange(4)
print(0, vs)
print(0.5, vs.reshape(1, -1).shape)
print(1, vs.reshape(1, -1) + vs.reshape(-1, 1))
print(2, vs.reshape(1, -1, 1) + vs.reshape(-1, 1, 1) + vs.reshape(1, 1, -1))
```

0 tensor([[0, 1, 2, 3]])
0.5 torch.Size([1, 4])
1 tensor([[0, 1, 2, 3],
 [1, 2, 3, 4],
 [2, 3, 4, 5],
 [3, 4, 5, 6]])
2 tensor([[[0, 1, 2, 3],
 [1, 2, 3, 4],
 [2, 3, 4, 5],
 [3, 4, 5, 6]],
 [[1, 2, 3, 4],
 [2, 3, 4, 5],
 [3, 4, 5, 6],
 [4, 5, 6, 7]],
 [[2, 3, 4, 5],
 [3, 4, 5, 6],
 [4, 5, 6, 7],
 [5, 6, 7, 8]],
 [[3, 4, 5, 6],
 [4, 5, 6, 7],
 [5, 6, 7, 8],
 [6, 7, 8, 9]]])
here's a simpler instance of the same behavior:
```
torch.zeros(4, 4) + torch.arange(4).reshape(-1, 1)
```

```
tensor([[0., 0., 0., 0.],
         [1., 1., 1., 1.],
         [2., 2., 2., 2.],
         [3., 3., 3., 3.]])
```

This can be very convenient:
```python
# here we normalize the rows of a matrix:
X = torch.randn(3, 2)
print(1, X.norm(dim = 1))
# A few things going on here, I recommend trying this one
# yourself and studying each piece.
X /= X.norm(dim = 1, keepdim = True)
print(2, X.norm(dim = 1))
```

```
tensor([1.5687, 2.2517, 1.7698])
tensor([1.0000, 1.0000, 1.0000])
```

slicing makes it easy to access submatrices/subtensors
```
ns = torch.arange(12).reshape(2,6)
print(1, ns)
print(2, ns[0, :])  # first row
print(3, ns[:, 0])  # first column
ms = ns.reshape(2,2,3)
print(4, ms)
print(5, ms[0,0,:])
print(6, ms[0, ...])  # dots mean "all remaining axes/dimensions"
print(7, ms[... , 0])
```

```
tensor([[ 0, 1, 2, 3, 4, 5],
         [ 6, 7, 8, 9, 10, 11]])
tensor([ 0, 1, 2, 3, 4, 5])
tensor([0, 6])
tensor([[ 0, 1, 2],
         [ 3, 4, 5]])
```

```
tensor([[ 6, 7, 8],
         [ 9, 10, 11]])
tensor([0, 1, 2])
tensor([[0, 1, 2],
         [3, 4, 5]])
tensor([[0, 3],
         [6, 9]])
```
Slicing can also take integer lists as input
print(1, ns[:, [0, 2, 4]])
Also boolean masks
print(2, ns[:, [True, False, True, False, True, False]])
try:
 # you can use pytorch integer arrays as well
 print(3, ns[:, torch.arange(2)])
 # but not float arrays
 print(4, ns[:, torch.arange(2) / 1])
except IndexError as E:
 print(5, f"Got exception: '{E}'")

1 tensor([[0, 2, 4],
 [6, 8, 10]])
2 tensor([[0, 2, 4],
 [6, 8, 10]])
3 tensor([[0, 1],
 [6, 7]])
5 Got exception: 'tensors used as indices must be long, byte or bool tensors'

many operations have in-place versions.
superficially this is good for efficiency reasons.
more importantly, pytorch does some internal book-keeping
with autodifferentiation which is lost if you do not do
in-place operations for variables you wish to compute
gradients with respect to.
(This will be clarified later.)
For now, here are some example in-place operations
v = torch.randn(5,4)
print(1, v.norm())
v += v # in-place arithmetic operations
v *= 2
print(2, v.norm())
v.clamp_(0, float('inf')) # zero out negative values, in-place
print(3, v.norm())

1 tensor(3.7304)
2 tensor(14.9216)
3 tensor(11.3672)

this step only matters if you have a gpu.
this line of code is in my pytorch programs, it means
"variable 'device' is first gpu if available, else cpu".
device = torch.device("cpu" if not torch.cuda.is_available()
 else "cuda:0")
that didn't put anything on gpu; we manually move things there
ns = torch.arange(4)
ns2 = ns.to(device)
print(1, ns.device, ns2.device)

try:
 # python disallows operations mixing cpu and gpu;
 # this is good, since moving data between them is expensive.
 ns + ns2
 print(2, "no exception: no gpu in use")
except Exception as E:
 print(3, f"pytorch error: {E}")

1 cpu cpu
2 no exception: no gpu in use

2 matplotlib plotting

[20]: import matplotlib.pyplot as plt

[21]: # plt.plot() lets you display many curves.
it has many parameters; in jupyter and ipython, you can execute
"plt.plot?" to see some of them.
note: gpu data must be moved to cpu before being passed to matplotlib
xs = torch.linspace(0, 2, 128)
plt.plot(xs, xs, marker = 's', markevery = 5,
 label = "identity")
plt.plot(xs, xs ** 2, marker = 'D', markevery = 7,
 label = 'squared')
plt.plot(xs, xs * xs, marker = '-', markevery = 9,
 label = 'squared again')
plt.plot(xs, (2 * xs).sin(), marker = 'd', markevery = 11,
 label = 'sin')
plt.legend()
We can put scatterplots and curve plots in the same figure.
if invoking this from a python script, you'd need to do
plt.clf()
to clear the figure after the previous one
(and also plt.savefig() or plt.show() to display).
X = torch.randn(100, 2) # create some random data
u = torch.randn(2) # sample a random "correct" linear predictor
pick a norm for u that has easy visualization:
u *= X.norm(dim = 1).max() / u.norm()
y = X @ u # label data according to the "planted" predictor
scatterplot of data, y given by color:
plt.scatter(
 X[:, 0],
 X[:, 1],
 # color according to y:
 c = (y - y.min()) / (y.max() - y.min()),
 cmap = "copper",
)
note that these plots are the weight vectors, not decision boundary
plt.plot([0, u[0]], [0, u[1]], lw = 10, label = "true solution")
ols = X.pinverse() @ y
plt.plot([0, ols[0]], [0, ols[1]], lw = 4, label = "ols")
plt.legend()
matplotlib has many features; here's a cute one to restyle a plot:

```python
with plt.style.context("bmh"):
    plt.scatter(
        X[:, 0],
        X[:, 1],
        # color according to y:
        c = (y - y.min()) / (y.max() - y.min()),
        cmap = "copper",
    )
```
3 autodifferentiation

let's go back to the scatterplot from before:
print(X.shape, u.shape, y.shape)
we'll find another with "manual" gradient descent
v = torch.zeros(2)
another with automatic gradient computation
w = torch.zeros(2, requires_grad = True)
another with automatic gradient computation
but also using torch.optim
z = torch.zeros(2, requires_grad = True)
this "requires_grad = True" means
"whenever this object appears in expressions, track how it is used,
so we can compute gradients later"
print(v)
print(w)
hey matus, you know, no one understands your contour plot function

torch.Size([100, 2]) torch.Size([2]) torch.Size([100])
tensor([0., 0.])
tensor([0., 0.], requires_grad=True)

Can directly modify requires_grad
q = torch.randn(5,5)
print(1, q.requires_grad)
q.requires_grad = True
print(2, q.requires_grad)
q.requires_grad_(False)
print(3, q.requires_grad)

1 False
2 True
3 False

[26]: print(1, torch.randn(5,5) @ torch.randn(5, requires_grad = True))
print(2, torch.randn(5,5) @ torch.randn(5))

1 tensor([2.9433, 0.0733, -1.6359, 2.6543, 1.2616], grad_fn=<MvBackward>)
2 tensor([-3.7747, -2.0741, 2.0844, 2.6925, 3.1590])

[27]: # now let's do some iterations of gradient descent on w and v
stepsize = 0.1 # a small one to help visualize
we'll use pytorch's sgd for z:
z_optimizer = torch.optim.SGD([z], lr = stepsize)
XXX note to future matus: gotcha about not modifying z directly
n_iters = 20
V = torch.empty(n_iters, 2)
W = torch.empty(n_iters, 2)
Z = torch.empty(n_iters, 2)
for i in range(n_iters):
 # let's save all iterates to plot them later
 V[i, :] = v
 # for w and z, if we copy them in like v, then
 # W also gets requires_grad enabled.
 # We can use .detach() to disconnect from the computation graph
 W[i, :] = w.detach()
 Z[i, :] = z.detach()

 # manual gradient computation on v:
 v_risk = ((X @ v - y) ** 2 / 2).mean()
 # take a gradient step:
 v -= stepsize * X.T @ (X @ v - y) / X.shape[0]

 # automatic gradient computation on w:
 w_risk = ((X @ w - y) ** 2 / 2).mean()
 # following line means
 # "go through the computation of 'w_risk',
 # and save gradient information for
 # tensors with all requires_grad=True"
 w_risk.backward()
 # we still need _use_ the saved gradient information
with torch.no_grad():
 # we will do that inside a torch.no_grad() block.
 # this means "here we do not track gradient computations".
 # this particular gradient computation blows up in various
 # ways without the block.
 # for v we were fine, there are no requires_grad variables.
 w = stepsize * w.grad
 # w.grad is where gradient information was stored.
 # we must explicitly clear it, or else it will be combined
 # with future iteration gradient information
 w.grad.zero_()
 # the .zero_() means "zero this out in place".
 #w = w - stepsize * w.grad

 # now let's do z
 z_optimizer.zero_grad() # the optimizer handles this now
 # rest is familiar from w:
 z_risk = ((X @ z - y) ** 2 / 2).mean()
 z_risk.backward()
 # now do the update. torch.no_grad() is unnecessary
 # because .step() invokes it internally.
 z_optimizer.step() # thanks, pytorch

 # lastly let's print the empirical risk of all
 with torch.no_grad():
 print(f"iter {i}"
 f" risk {v_risk:.3g} {w_risk:.3g} {z_risk:.3g}"
)

with plt.style.context("bmh"):
 plt.scatter(
 X[:, 0],
 X[:, 1],
 # color according to y:
 c = (y - y.min()) / (y.max() - y.min()),
 cmap = "copper",
)
 plt.plot([0, u[0]], [0, u[1]], lw = 25, label = "true solution")
 plt.plot(V[:, 0], V[:, 1],
 lw = 15, color = 'black',
 label = "manual GD")
 plt.plot(W[:, 0], W[:, 1],
 lw = 10, color = 'white',
 label = "auto GD")
 plt.plot(Z[:, 0], Z[:, 1],
 lw = 5, color = 'black',
 label = "torch.optim.SGD")
plt.legend()

iter 0 risk 5.56 5.56 5.56
iter 1 risk 4.71 4.71 4.71
iter 2 risk 3.98 3.98 3.98
iter 3 risk 3.37 3.37 3.37
iter 4 risk 2.86 2.86 2.86
iter 5 risk 2.42 2.42 2.42
iter 6 risk 2.05 2.05 2.05
iter 7 risk 1.73 1.73 1.73
iter 8 risk 1.47 1.47 1.47
iter 9 risk 1.24 1.24 1.24
iter 10 risk 1.05 1.05 1.05
iter 11 risk 0.89 0.893 0.893
iter 12 risk 0.757 0.757 0.757
iter 13 risk 0.641 0.641 0.641
iter 14 risk 0.543 0.543 0.543
iter 15 risk 0.461 0.461 0.461
iter 16 risk 0.39 0.39 0.39
iter 17 risk 0.331 0.331 0.331
iter 18 risk 0.28 0.28 0.28
iter 19 risk 0.238 0.238 0.238

Let's take a moment to study the last w_risk

w_risk
```python
[28]: tensor(0.2377, grad_fn=<MeanBackward0>)

[29]: # the "grad_fn" is also part of the computation tracking.
    # if we use .detach() here, similarly it clears this.
    w_risk.detach()

[29]: tensor(0.2377)

[30]: w = torch.randn()
print(1, w, w.shape)
print(2, w.detach(), w.detach().clone(), w.item())
print(3, w.view(-1,1,1))

1 tensor(-0.4200) torch.Size([])
2 tensor(-0.4200) tensor(-0.4200) -0.420047373725795746
3 tensor([[-0.4200]])

[31]: # here's an example of what goes wrong within torch.no_grad.
    w2 = torch.randn(2, requires_grad = True)
    risk = ((X @ w2 - y) ** 2 / 2).mean()
    risk.backward()
    with torch.no_grad():
        # WRONG WAY: assign to a temporary variable
        w3 = w2 - stepsize * w2.grad
        # RIGHT WAY: in place operations.
        w2 -= stepsize * w2.grad
        # same goes with other operations like torch.clamp(), etc.
        # notice that one of the following changes
        print(w3.requires_grad, w2.requires_grad)

False True

[32]: # note that "autodifferentiation" doesn't require differentiability.
    w = torch.zeros(), requires_grad = True) # scalar zero
    nondiff = torch.nn.functional.relu(w)
    nondiff.backward()
    # relu is not differentiable at zero...
    print(w.grad)
    # relu has clarke differential (and subdifferential) of [0,1] at 1.
    # so anything within [0,1] seems reasonable.

    tensor(0.)

[33]: # good job, pytorch, how about this one.
    w.grad.zero_() # first zero out old gradient
    relu = torch.nn.functional.relu # shorthand
    tricky = relu(w) - relu(-w) # identity map
    tricky.backward()
```
4 single-layer networks

```python
print(w.grad)  # 1 is the only correct value
tensor(0.)
```

```python
# a basic fully connected layer; randomly initialized
fc1 = torch.nn.Linear(5, 4, bias=True)
# another one, different random init:
fc2 = torch.nn.Linear(5, 4, bias=True)

# let's apply these layers to some data
x = torch.randn(5)
# you can call them like functions. result nonzero due to random init.
print(((fc1(x) - fc2(x)).norm())
tensor(2.2624, grad_fn=<CopyBackwards>)
```

```python
# A layer is itself a subclass of the general torch network class
print(1, isinstance(fc1, torch.nn.Module))
# this class contains main convenient operations.
# here are two ways to apply them to data:
print(2, (fc1(x) - fc1.forward(x)).norm())
# note that .forward()'s name matches with .backward(),
# corresponding to backpropagation.
# here we see we can print networks, useful for debugging:
print(3, fc1)
```

1 True
2 tensor(0., grad_fn=<CopyBackwards>)
3 Linear(in_features=5, out_features=4, bias=True)

```python
# torch.nn.Module instances can iterate over parameters.
# most often we use this to define gradient descent
for P in fc1.parameters():
    print(P.shape)
```

torch.Size([4, 5])
torch.Size([4])

```python
# what about with no bias?
for P in torch.nn.Linear(5, 4, bias=False).parameters():
    print(P.shape)
```

torch.Size([4, 5])
this zeros out gradients.
fc1.zero_grad()
it is like accessing the weights (and biases!) within fc1
and calling .zero_().

fc = torch.nn.Linear(5, 1)
torch networks can take minibatches directly as input;
now the inputs are written as rows.
X = torch.randn(10, 5)
print(1, fc(X[0, :]).shape) # column vector in, singleton vector out
print(2, fc(X).shape) # matrix in, _matrix_ out
print(3, fc(X[:, 5, :]).shape) # now with a minibatch

1 torch.Size([1])
2 torch.Size([10, 1])
3 torch.Size([5, 1])

Typically pytorch code does not directly extract minibatches from
a big data tensor, but uses wrappers from torch.utils.data
nb = 32
n = 256
following wraps inputs and outputs into single object
data = torch.utils.data.TensorDataset(
 torch.arange(n).type(torch.float32), # our fake input data
 # using sequential data to tell apart shuffle and not
 torch.randint(0, 10, (n,)) # our labels
)
for shuffle in [False, True]:
 # DataLoader handles minibatching
 loader = torch.utils.data.DataLoader(data, batch_size = nb,
 shuffle = shuffle, num_workers = 1)
 # loader exposes an iterable interface:
 for i, (Xb, yb) in enumerate(loader):
 print(f"shuffle {shuffle} {i} {Xb.min()} / nb:.3g")

shuffle False 0 0
shuffle False 1 1
shuffle False 2 2
shuffle False 3 3
shuffle False 4 4
shuffle False 5 5
shuffle False 6 6
shuffle False 7 7
shuffle True 0 0.188
shuffle True 1 0.0312
shuffle True 2 0.438
shuffle True 3 0.219
shuffle True 4 0
shuffle True 5 0.125
shuffle True 6 0.0625
shuffle True 7 0.0938

here's a gotcha!
for linear logistic regression, we did y * (X @ w). now:
y = torch.randn(X.shape[0])
print((y * fc(X)).shape) # OOPS
print((y * fc(X).view(-1)).shape) # correct...
torch.Size([10, 10])
torch.Size([10])

We can also move entire networks to gpu with one function call
(in this case, it moves the weights and the biases).
fc.to(device)

Linear(in_features=5, out_features=1, bias=True)

lin = torch.nn.Linear(4,5)
lin(torch.randn(3,4))
tensor([[0.0391, 0.2412, -0.1293, -0.7226, 0.1816],
 [0.0357, -0.0997, 0.1184, 0.4253, -0.2658],
 [-0.2063, 0.1042, 0.2319, 0.0209, 0.0116]],
 grad_fn=<AddmmBackward>)

We can also create convolutional layers easily
conv = torch.nn.Conv2d(5, 4, 2)
example random data with 10 6x6 images using 5 channels:
X = torch.randn(10, 5, 6, 6)
print(1, conv(X[:1, ...]).shape) #output on first example
print(2, conv(X).shape) #output on whole batch
try:
 # unfortunately, unlike for linear layers,
 # we _must_ use inputs with 4 axes of input
 print(3, conv(X[0, ...]).shape)
except Exception as E:
 print(4, f"Got exception: '{E}'")
just a sanity check:
indeed convolutional layers, unlike linear layers,
can handle different choices of input width x height
print(5, conv(torch.randn(10, 5, 10, 10)).shape)

1 torch.Size([1, 4, 5, 5])
2 torch.Size([10, 4, 5, 5])
4 Got exception: 'Expected 4-dimensional input for 4-dimensional weight [4, 5, 2, 2], but got 3-dimensional input of size [5, 6, 6] instead'
5 torch.Size([10, 4, 9, 9])

[45]: # convolutional layers also have biases on by default!
 for P in conv.parameters():
 print(P.shape)

 torch.Size([4, 5, 2, 2])
 torch.Size([4])

[46]: # activations also subclass torch.nn.Module
 relu = torch.nn.ReLU()
 print(1, relu)
 print(2, len(list(relu.parameters())))
 v = torch.linspace(-3, 3, 7)
 print(3, relu(v))
 # many layer types can also be invoked "functionally",
 # without creating a layer object.
 print(4, torch.nn.functional.relu(v))
 # we can also call relu directly on tensors.
 print(5, v.relu())

 1 ReLU()
 2 0
 3 tensor([0., 0., 0., 0., 1., 2., 3.])
 4 tensor([0., 0., 0., 0., 1., 2., 3.])
 5 tensor([0., 0., 0., 0., 1., 2., 3.])

[47]: # We also have softmax layers...
 v = torch.randn(4)
 softmax = torch.nn.Softmax(dim = 0)
 print(1, softmax(v))
 print(2, torch.nn.functional.softmax(v, dim = 0))
 # let's sanity check
 print(4, v.exp() / v.exp().sum())

 1 tensor([0.3339, 0.4058, 0.1528, 0.1075])
 2 tensor([0.3339, 0.4058, 0.1528, 0.1075])
 3 tensor([0.3339, 0.4058, 0.1528, 0.1075])
 4 tensor([0.3339, 0.4058, 0.1528, 0.1075])

[48]: # Let's further sanity check softmax with cross entropy
 yhat = v.view(1, -1)
 y = torch.ones(1,).type(torch.long)
 print(1, torch.nn.functional.cross_entropy(yhat, y))
 # It also exists as a layer!
 risk = torch.nn.CrossEntropyLoss()
 assert(len(list(risk.parameters()))) == 0)
print(2, risk(yhat, y))
variable name "risk" because averages batches:
yhat = torch.randn(10, 5)
y = torch.randint(0, yhat.shape[1], (yhat.shape[0],))
risk1 = risk(yhat, y)
assert(len(risk1.shape) == 0)
lastly let's check the computation manually.
pytorch has .logsumexp() for numerical reasons;
following slicing has a tiny gotcha, can't use : in place of range.
risk2 = (-yhat[torch.arange(10), y] + yhat.logsumexp(dim = 1)).mean()
another way
risk3 = -yhat.softmax(dim = 1)[torch.arange(10), y].log().mean()
assert((risk2 - risk1).abs().item() < 1e-6 and
 (risk3 - risk2).abs().item() < 1e-6)

1 tensor(0.9020)
2 tensor(0.9020)

19
note that batch norm has those "affine" parameters by default.
we did not do any updates do them, so they're still default.
for P in bn.parameters():
 print(P.data)

tensor([1., 1.])
tensor([0., 0.])

5 multi-layer networks

now let's work with multi-layer networks.
for networks that just stack standard types of layers,
here is an easy way:
net = torch.nn.Sequential(
 torch.nn.Linear(5,100),
 torch.nn.ReLU(),
 # torch.nn.Linear(100,1)
)

note that "number layers" is already ambiguous and inconsistent
across neural net conventions...

we still have .forward(), function call, .zero_grad(),
#net(x)
net(torch.randn(5))
print([[1,]])
print(net) # compare this with printing just torch.nn.Linear

Sequential(
 (0): Linear(in_features=5, out_features=100, bias=True)
 (1): ReLU()
)

since now we have multiple layers,
.parameters() may be confusing for debugging purposes
since each layer can have multiple parameters (e.g., due to bias).
instead, we can use .named_parameters().
here we can see the default names:
for (Pname, P) in net.named_parameters():
 print(Pname, P.shape)

0.weight torch.Size([100, 5])
0.bias torch.Size([100])

also convenient to define networks as classes.
class SquaredReLUNet(torch.nn.Module):
 def __init__(self, d, width):
 super(SquaredReLUNet, self).__init__() # boilerplate
 self.d = d
 self.width = width
 self.fc1 = torch.nn.Linear(d, width, bias = False)
 self.relu = torch.nn.ReLU()
 self.fc2 = torch.nn.Linear(width, 1, bias = False)
 # torch.nn.Module "sees" fc1 and fc2 and they are
 # accessed by operations like zero_grad(), parameters(), etc.
 # for more exotic architectures, you need to
 # manually register with self.add_module().

 def forward(self, x):
 x = self.fc1(x)
 # squared ReLU; more convenient than with torch.nn.Sequential
 x = self.relu(x) ** 2
 return self.fc2(x)

net = SquaredReLUNet(5, 128)
net(torch.randn(50, 5)).shape

torch.Size([50, 1])

net.zero_grad() # let's clear all gradient information.
(X, y) = (torch.randn(50, 5), torch.randn(50))
risk = ((net(X).view(-1) - y) ** 2).mean() / 2 # note ".view(-1)"
risk.backward()

with torch.no_grad():
 # they all get magically registered in the __init__
 for (Pi, P) in enumerate(net.parameters()):
 print(Pi, P.shape, P.grad.shape)
 P -= 0.01 * P.grad # in place operations!

 # it is possible that it doesn't decrease,
 # since the step size is fixed but the random data could be wild...
 print(f"risk should decrease: init \{risk:.3g\},
 one iter \{(((net(X).view(-1) - y) ** 2).mean() / 2):.3g\}"
)

0 torch.Size([128, 5]) torch.Size([128, 5])
1 torch.Size([1, 128]) torch.Size([1, 128])
risk should decrease: init 0.547, one iter 0.54

6 Digit experiment

[56]:

 import sklearn.datasets
 sk_digits = sklearn.datasets.load_digits()
 (X, Y) = (torch.tensor(sk_digits.data).type(torch.float), torch.
 tensor(sk_digits.target))
 print(X.shape, y.shape, X.max(), X.min())
 X /= X.max()
 for i in range(20):
 plt.figure(i + i)
 ax = plt.imshow(X[i, ...].view(-1, 8))
 plt.colorbar(ax)
 plt.title(f"number \{i\}, should be a \{Y[i]\}")

torch.Size([1797, 64]) torch.Size([50]) tensor(16.) tensor(0.)
number 0, should be a 0

number 1, should be a 1
number 4, should be a 4

number 5, should be a 5
number 6, should be a 6

number 7, should be a 7
number 8, should be a 8

number 9, should be a 9
number 10, should be a 0

number 11, should be a 1
number 14, should be a 4

number 15, should be a 5
number 16, should be a 6

number 17, should be a 7
\[n = X.shape[0]. \]
\[\text{perm} = \text{list(range}(n)) \]
random.shuffle(perm)
(X, Y) = ({'tr': X[perm[:n//2], ...], 'te': X[perm[n//2:], ...]}, {'tr':Y[perm[:n//2]], 'te':Y[perm[n//2:]]})

[58]: plt.imshow(X['tr'][0, ...].view(-1,8))

[58]: <matplotlib.image.AxesImage at 0x7fb4d6eb48b0>

[59]: width = 64
mb_sz = 128

net1 = torch.nn.Sequential(
 torch.nn.Linear(X['tr'].shape[1], width),
 torch.nn.ReLU(),
 torch.nn.Linear(width, len(sk_digits.target_names)),
)

class Net2(torch.nn.Module):
 def __init__(self, width):
 super(Net2, self).__init__() # boilerplate
 self.conv = torch.nn.Conv2d(1, width, kernel_size = 3)
 self.relu = torch.nn.ReLU()
 self.fc = torch.nn.Linear(6 * 6 * width, 10)

 def forward(self, x):
 x = x.view(x.shape[0], 1, 8, 8)
x = self.conv(x)
x = self.relu(x)
x = x.view(x.shape[0], -1)
return self.fc(x)

net2 = Net2(width)

for (net_i, (net_s, net, stepsize)) in enumerate([('dense', net1, 0.1), ('conv', net2, 0.1),]):
 losses = { 'tr' : [], 'te' : [] }
 for i in range(4000):
 net.zero_grad()
 idxs = random.sample(range(X['tr'].shape[0]), mb_sz)
 x, y = (X['tr'][idxs, ...], Y['tr'][idxs])
 yhat = net(x)
 # bakes in ".mean()":
 loss = torch.nn.CrossEntropyLoss()(yhat, y)
 loss.backward()
 with torch.no_grad():
 if (i + 1) % 50 == 0:
 yhat2 = net(X['te'])
 loss2 = torch.nn.CrossEntropyLoss()(yhat2, Y['te'])
 print(f"i {loss:.3f} {loss2:.3f}"")
 losses['tr'].append(loss.detach())
 losses['te'].append(loss2.detach())

 for P in net.parameters():
 P -= stepsize * P.grad
 for s in ['tr', 'te']:
 plt.figure(i)
 plt.plot(range(len(losses[s])), losses[s],
 label = f"{net_s} {s}")

 with torch.no_grad():
 yhat2 = net(X['te'])
 loss2 = torch.nn.CrossEntropyLoss(reduction = 'none')(yhat2, Y['te'])
 loss2_sort = loss2.sort()
 for j in range(5):
 plt.figure(2 + 10 * net_i + 2 * j)
 idx = loss2_sort.indices[j]
 yhat2_single = yhat2[idx, ...].argmax().item()
 plt.imshow(X['te'][idx, ...].view(8,8))
 plt.title(f"{j}th least confusing te for {net_s}, yhat\n \rightarrow\{yhat2_single\} y \{Y['te'][idx]\}\n")
 plt.figure(2 + 10 * net_i + 2 * j + 1)
 idx = loss2_sort.indices[-1-j]
\[
yhat2_{\text{single}} = \text{yhat2[idx, ...].argmax().item()}
\]
\[
\text{plt.imshow(X[\text{'te'][idx, ...].view(8,8))}
\]
\[
\text{plt.title(\text{f"{\{j}\}th most confusing te for \{net_s\}, yhat_________\{yhat2_{\text{single}}\} y \{Y[\text{'te'][idx]\}"})}
\]

```python
plt.figure()
plt.title("risk curves")
plt.legend()
plt.show()
```

<table>
<thead>
<tr>
<th>49</th>
<th>1.849</th>
<th>1.896</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>1.078</td>
<td>1.147</td>
</tr>
<tr>
<td>149</td>
<td>0.639</td>
<td>0.689</td>
</tr>
<tr>
<td>199</td>
<td>0.373</td>
<td>0.484</td>
</tr>
<tr>
<td>249</td>
<td>0.375</td>
<td>0.379</td>
</tr>
<tr>
<td>299</td>
<td>0.301</td>
<td>0.315</td>
</tr>
<tr>
<td>349</td>
<td>0.207</td>
<td>0.279</td>
</tr>
<tr>
<td>399</td>
<td>0.170</td>
<td>0.248</td>
</tr>
<tr>
<td>449</td>
<td>0.208</td>
<td>0.228</td>
</tr>
<tr>
<td>499</td>
<td>0.140</td>
<td>0.215</td>
</tr>
<tr>
<td>549</td>
<td>0.167</td>
<td>0.201</td>
</tr>
<tr>
<td>599</td>
<td>0.119</td>
<td>0.191</td>
</tr>
<tr>
<td>649</td>
<td>0.116</td>
<td>0.181</td>
</tr>
<tr>
<td>699</td>
<td>0.092</td>
<td>0.175</td>
</tr>
<tr>
<td>749</td>
<td>0.131</td>
<td>0.172</td>
</tr>
<tr>
<td>799</td>
<td>0.098</td>
<td>0.165</td>
</tr>
<tr>
<td>849</td>
<td>0.103</td>
<td>0.161</td>
</tr>
<tr>
<td>899</td>
<td>0.119</td>
<td>0.161</td>
</tr>
<tr>
<td>949</td>
<td>0.107</td>
<td>0.155</td>
</tr>
<tr>
<td>999</td>
<td>0.083</td>
<td>0.152</td>
</tr>
<tr>
<td>1049</td>
<td>0.075</td>
<td>0.149</td>
</tr>
<tr>
<td>1099</td>
<td>0.112</td>
<td>0.144</td>
</tr>
<tr>
<td>1149</td>
<td>0.091</td>
<td>0.143</td>
</tr>
<tr>
<td>1199</td>
<td>0.052</td>
<td>0.143</td>
</tr>
<tr>
<td>1249</td>
<td>0.092</td>
<td>0.140</td>
</tr>
<tr>
<td>1299</td>
<td>0.055</td>
<td>0.139</td>
</tr>
<tr>
<td>1349</td>
<td>0.039</td>
<td>0.140</td>
</tr>
<tr>
<td>1399</td>
<td>0.033</td>
<td>0.137</td>
</tr>
<tr>
<td>1449</td>
<td>0.033</td>
<td>0.135</td>
</tr>
<tr>
<td>1499</td>
<td>0.046</td>
<td>0.134</td>
</tr>
<tr>
<td>1549</td>
<td>0.070</td>
<td>0.132</td>
</tr>
<tr>
<td>1599</td>
<td>0.036</td>
<td>0.134</td>
</tr>
<tr>
<td>1649</td>
<td>0.063</td>
<td>0.130</td>
</tr>
<tr>
<td>1699</td>
<td>0.064</td>
<td>0.132</td>
</tr>
<tr>
<td>1749</td>
<td>0.057</td>
<td>0.132</td>
</tr>
<tr>
<td>1799</td>
<td>0.031</td>
<td>0.131</td>
</tr>
<tr>
<td>1849</td>
<td>0.039</td>
<td>0.130</td>
</tr>
<tr>
<td>Year</td>
<td>X 0.052</td>
<td>Y 0.129</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>1899</td>
<td>0.052</td>
<td>0.129</td>
</tr>
<tr>
<td>1949</td>
<td>0.039</td>
<td>0.129</td>
</tr>
<tr>
<td>1999</td>
<td>0.042</td>
<td>0.127</td>
</tr>
<tr>
<td>2049</td>
<td>0.031</td>
<td>0.126</td>
</tr>
<tr>
<td>2099</td>
<td>0.039</td>
<td>0.126</td>
</tr>
<tr>
<td>2149</td>
<td>0.032</td>
<td>0.128</td>
</tr>
<tr>
<td>2199</td>
<td>0.037</td>
<td>0.126</td>
</tr>
<tr>
<td>2249</td>
<td>0.033</td>
<td>0.126</td>
</tr>
<tr>
<td>2299</td>
<td>0.024</td>
<td>0.125</td>
</tr>
<tr>
<td>2349</td>
<td>0.033</td>
<td>0.127</td>
</tr>
<tr>
<td>2399</td>
<td>0.031</td>
<td>0.125</td>
</tr>
<tr>
<td>2449</td>
<td>0.027</td>
<td>0.126</td>
</tr>
<tr>
<td>2499</td>
<td>0.023</td>
<td>0.124</td>
</tr>
<tr>
<td>2549</td>
<td>0.032</td>
<td>0.124</td>
</tr>
<tr>
<td>2599</td>
<td>0.025</td>
<td>0.123</td>
</tr>
<tr>
<td>2649</td>
<td>0.017</td>
<td>0.124</td>
</tr>
<tr>
<td>2699</td>
<td>0.024</td>
<td>0.124</td>
</tr>
<tr>
<td>2749</td>
<td>0.026</td>
<td>0.123</td>
</tr>
<tr>
<td>2799</td>
<td>0.030</td>
<td>0.124</td>
</tr>
<tr>
<td>2849</td>
<td>0.022</td>
<td>0.124</td>
</tr>
<tr>
<td>2899</td>
<td>0.028</td>
<td>0.124</td>
</tr>
<tr>
<td>2949</td>
<td>0.016</td>
<td>0.123</td>
</tr>
<tr>
<td>2999</td>
<td>0.026</td>
<td>0.123</td>
</tr>
<tr>
<td>3049</td>
<td>0.016</td>
<td>0.122</td>
</tr>
<tr>
<td>3099</td>
<td>0.013</td>
<td>0.124</td>
</tr>
<tr>
<td>3149</td>
<td>0.024</td>
<td>0.123</td>
</tr>
<tr>
<td>3199</td>
<td>0.026</td>
<td>0.123</td>
</tr>
<tr>
<td>3249</td>
<td>0.028</td>
<td>0.123</td>
</tr>
<tr>
<td>3299</td>
<td>0.012</td>
<td>0.124</td>
</tr>
<tr>
<td>3349</td>
<td>0.018</td>
<td>0.123</td>
</tr>
<tr>
<td>3399</td>
<td>0.018</td>
<td>0.124</td>
</tr>
<tr>
<td>3449</td>
<td>0.019</td>
<td>0.122</td>
</tr>
<tr>
<td>3499</td>
<td>0.022</td>
<td>0.123</td>
</tr>
<tr>
<td>3549</td>
<td>0.022</td>
<td>0.123</td>
</tr>
<tr>
<td>3599</td>
<td>0.017</td>
<td>0.124</td>
</tr>
<tr>
<td>3649</td>
<td>0.017</td>
<td>0.123</td>
</tr>
<tr>
<td>3699</td>
<td>0.014</td>
<td>0.122</td>
</tr>
<tr>
<td>3749</td>
<td>0.015</td>
<td>0.123</td>
</tr>
<tr>
<td>3799</td>
<td>0.017</td>
<td>0.123</td>
</tr>
<tr>
<td>3849</td>
<td>0.017</td>
<td>0.122</td>
</tr>
<tr>
<td>3899</td>
<td>0.013</td>
<td>0.122</td>
</tr>
<tr>
<td>3949</td>
<td>0.015</td>
<td>0.122</td>
</tr>
<tr>
<td>3999</td>
<td>0.015</td>
<td>0.122</td>
</tr>
<tr>
<td>49</td>
<td>0.015</td>
<td>0.404</td>
</tr>
<tr>
<td>99</td>
<td>0.138</td>
<td>0.254</td>
</tr>
<tr>
<td>149</td>
<td>0.119</td>
<td>0.203</td>
</tr>
<tr>
<td>199</td>
<td>0.097</td>
<td>0.184</td>
</tr>
<tr>
<td>249</td>
<td>0.108</td>
<td>0.181</td>
</tr>
</tbody>
</table>
2699 0.005 0.136
2749 0.009 0.134
2799 0.013 0.136
2849 0.007 0.133
2899 0.008 0.134
2949 0.006 0.137
2999 0.010 0.134
3049 0.007 0.135
3099 0.009 0.138
3149 0.008 0.134
3199 0.009 0.135
3249 0.004 0.136
3299 0.007 0.135
3349 0.005 0.139
3399 0.006 0.137
3449 0.004 0.134
3499 0.005 0.138
3549 0.004 0.139
3599 0.006 0.142
3649 0.004 0.140
3699 0.005 0.139
3749 0.006 0.138
3799 0.004 0.138
3849 0.007 0.140
3899 0.007 0.139
3949 0.004 0.136
3999 0.005 0.140

/tmp/ipykernel_383958/918564732.py:63: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
plt.figure(2 + 10 * net_i + 2 * j + 1)
0th least confusing te for dense, yhat 7 y 7

0th most confusing te for dense, yhat 5 y 9
4th least confusing te for dense, yhat 2 y 2

4th most confusing te for dense, yhat 2 y 3
1th least confusing te for conv, yhat 0 y 0

1th most confusing te for conv, yhat 2 y 3
3th least confusing te for conv, yhat 0 y 0

3th most confusing te for conv, yhat 1 y 6
for P in net2.parameters():
 print(P.shape)

torch.Size([64, 1, 3, 3])
torch.Size([64])
torch.Size([10, 2304])
torch.Size([10])