Lecture 7: Signal-to-noise in wide networks

* HW1?
* HW2 with easy code?

Plan for next few lectures

\[F(x; U_0) + \langle \nabla F(x; U_0), U - U_0 \rangle \]

\[= \sum_j a_j (\sigma(x_i U_{0j}) + \sigma'(x_i U_{0j}) x_j (U_{j0} - U_{0j})) \]

\[= \frac{1}{2} \|U - U_0\|^2 \cdot \frac{D}{2} \| \alpha \| \cdot \|U\| \]

ReLU

\[|F(x; W) - [F(x; V) + \langle \nabla F(x; V), W - V \rangle]| \leq 5 m^{\frac{1}{3}} (B^{\frac{4}{3}} + B^{\frac{2}{3}} \ln(m/r)^{\frac{1}{4}}) \]

* Signal-to-noise phenomenon

\(F_0 \) is a universal approximator

\(\Rightarrow \) Implies scaling

\(\frac{e}{\tilde{m}} F_0 \)

\(\Rightarrow \) Then can take limits

\(\lim_{m \to \infty} \frac{e}{\tilde{m}} F_0 \overset{a.s.}{\to} F_\infty \)

Krends
In the limit, \[||W|| = 5M \]

Signal property, given \(\frac{1}{\sqrt{n}} \), prove \(E(\hat{W}, V_0) \in 16 \ln(\frac{C}{T}) \)

Note \(E(\hat{V}, V_0) = 2, e + c \cdot d ||V_0||^2 \)

Theorem (signal-sieve phenomenon), i.e., \(\hat{W} \)

Let \(\text{return} \) with \(g(x) = \sum_{\omega} \sigma_0(\phi_\omega(x)) \) given with \(||W|| = 1 \).

Let \(\text{sieve parameter} \) \(C \) be given with \(\frac{1}{\sqrt{n}} > \frac{1}{C} \).

with \(\frac{1}{\sqrt{n}} > \frac{1}{C} \), we have \(\sigma \in \Omega(1/||V_0||) \).

with \(\alpha = \gamma(1/||V_0||) \)

such that \(f(x) = \sum_{\omega} \xi_\omega \).

Proved: \(||V|| \leq \sqrt{2}L \), with \(||V|| = ||V_0|| = 0 \).

Remark: Implies unsupervised learning initialization.

Given \(\ln(t) \) (with \(\in R \) a constant, can change \(\sigma(x) \) = \(\sigma(\phi(x)) \)

and \(\sigma \) in \(C \).

then \(\sigma \) is known and \(\sigma \) is fixed with \(||V|| = 0 \).

and \(\frac{1}{\sqrt{n}} \ln(t) - \frac{1}{\sqrt{n}} \)

with \(\frac{1}{\sqrt{n}} \ln(t) \) and \(\alpha = \gamma(1/||V_0||) \).

For certain \(\alpha \), it is known how to prove this result with \(\alpha \) replaced by \(0 \) in \(\alpha \).

Example: A special case of deep learning learning heuristics.

Define \(\sigma = \frac{1}{\sqrt{n}} \ln(t) \cdot \sigma(x) \)

Given \((\phi_{(x)}, \alpha_{(x)}) \), define \(\alpha_{(x)} = \alpha_{(x)} + \frac{1}{\sqrt{n}} \ln(t) \cdot \sigma(x) \)

where \(T \) = \(T \cdot \sigma(x) \).

(\(\alpha_{(x)} \)) \in \(\sigma(x) \).

Let \(\sigma(x) \) = \(\sigma(x) \).

Theorem: Under regularity conditions on \(\ln(t) \), \(T \) = \(T \), \(\sigma(x) \) = \(\sigma(x) \).

Let \(\sigma(x) = \sigma(x) \).

when \(\sigma(x) = \sigma(x) \).

Suppose \(T \) is large.

Need \(\sigma(x) \), \(\sigma(x) \) is large.

Thus, \(\sigma(x) \) is large.

Proof:

\[
\frac{1}{\sqrt{n}} \ln(t) \cdot \sum_{\omega} \sigma_0(\phi_\omega(x)) + \frac{1}{\sqrt{n}} \ln(t) \cdot \sum_{\omega} \sigma_0(\phi_\omega(x))
\]

\[\rightarrow \text{RMS w.r.t. SLLN.}\]
Office hours

(ReLU theorem from last time.)

Want \(S \subseteq \mathbb{R} \) s.t. \(v_j \in S \), \(\langle v_j, x \rangle \geq 0 \) \(\iff \langle w_j, x \rangle \geq 0 \)

Define \(S = \bigcup_{j \in \mathbb{Z}, m} : |v_{o,j}^T| \leq \tau \|x\| \) or \(|w_j - v_{o,j}^T\| \geq \tau \) or \(\|w_j - v_{o,j}^T\| \geq \tau \)

Consider \(j \notin S \Rightarrow \exists \theta : |v_{o,j}^T| > \tau \|x\| \) and \(\|w_j - v_{o,j}^T\| \leq \tau \) or \(\|w_j - v_{o,j}^T\| \leq \tau \)

Suppose \(v_{o,j}^T x > \tau \|x\| \)

\(v \) - done it as shown \(v_{o,j}^T x \geq 0 \). \(v_{o,j}^T x = \langle v_j - v_{o,j}^T + v_{o,j}^T, x \rangle \)

\(w \) - done it as shown \(w_{o,j} x \geq 0 \).

Otherwise \(v_{o,j}^T x < -\tau \|x\| \)

\(w \) - done it \(v_j^T x \leq 0 \).

\(w \) - done it \(w_{o,j}^T x \leq 0 \).