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L. (Miseellaneous short guestions.)

[a) Let F: B — R;_,." be o convex loas, and fix any distribution on (&, g); conabder our familiar setting of
risk minimization for lnear functions, meaning (o) = E6 (., —ey)). Bhow that given a mamndom
deaw () amd any g £ 00 (. —oy}). then E{—xyg) € f ().

Remark: this problem justifies the cholee of stochastie gradient descent nsed in practics.
Recall: the subgradient & = defned as

Ah(i) = {.-1 B! : v e B Aw) 2 Riw) + (5.0 —w) }.

(b) Suppose & - BY — R s A-strongly-comvex (A-sc) and differentiable, and define the Bregman
IIIH.I[‘.".IB‘«I:?ILT‘!

DPalr, y) i= d{z)— [tm + (V) — y:l} )

Prove that Iy, 1= A-sc in it first argument.
{Remark. What about the second argument? Docs a weaker property hold?)
() Onee again lot & : EY = B be Asc. Recall the definition of Fenchel comgjugate Bis) =
S egd (T, 8 — D2}
The wpdate rule of mireor descent may be wrltton

o i= arg milu_r{vfl:u':l_r:} + Dhgfa ww).
i

Prove this i= equivalent to
' = VT (@) — 4V [{a) .
Hint: since & ks steongly comves, then (Tid) ! exists and is equal to W97 (you may use this
withowt proof].
() Suppose (¢ € B4 s symmetric positive definite, let b € BT be arbitary, and define f{r) .=
_-’E:"Qr + b7, Using direct computation (and not the preceding inverse geadicnt gradient Fact),
derbve the Fenclel conjugate £ aml prove it 8 correct.

{e) Now suppose £ € RO jg merely svmmetric positive semi-definite (It may Fail to have an overse),
b e BY is again arbitrary, and define [ix) = %u-"'(l}:. + BT x. Derive the Feachel conjugate f* and
prove it B correct.

it

Freedman’s ineguality |Bernsteln's negoality for martingales) lmplies: given martingale differenee
seqquence (2100 with |Z;] < banmd 37, E:zﬂzq,] < o, then with probability at least 1 — &,

blnj1/d
32 < I + L!“

Conslder the setting of the theorem b Lecture 15, but additionally Eig?lw,_,) < ¢, and that for
any given iy 1t = pessible to obtain an arbiteary oomber of mutoally conditionally independent
atoclmstle gradlents g with all stated properties.

Use all these assnmptions together with the above verston of Freedman's inequality to provide a
refinement of the theorem in Lecture 15,

Consider the sotting of the previous parct, bot suppose a minibateh of skze b s wsed (b conditionally
indepeadent stochastie gradicnts ave averaged together for each step). State the optimal values of
atep size g and bateh size b by optimizing the right hand side of the previons bound.

(I

Solution.
| Yo sedution here. |
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