1. (Miscellaneous short questions.)

(a) Let ℓ : ℝ → ℝ_{≥0} be a convex loss, and fix any distribution on (x, y); consider our familiar setting of risk minimization for linear functions, meaning f(w) := Eℓ(⟨w, -xy⟩). Show that given a random draw (x, y) and any g ∈ ∂ℓ(⟨w, -xy⟩), then E(-xyg) ∈ ∂f(w).

Remark: this problem justifies the choice of stochastic gradient descent used in practice.

Recall: the subgradient ∂h is defined as

$$\partial h(w) = \left\{ s \in \mathbb{R}^d : \forall v \in \mathbb{R}^d \cdot h(v) \ge h(w) + \langle s, v - w \rangle \right\}.$$

(b) Suppose Φ : R^d → R is λ-strongly-convex (λ-sc) and differentiable, and define the Bregman divergence

$$D_{\Phi}(x, y) := \Phi(x) - \left(\Phi(y) + \left(\nabla \Phi(y), x - y\right)\right).$$

Prove that D_{Φ} is λ -sc in its first argument.

(Remark. What about the second argument? Does a weaker property hold?)

(c) Once again let Φ : R^d → R be λ-sc. Recall the definition of Fenchel conjugate Φ*(s) := sup_{x∈R^d} ⟨x, s⟩ − Φ(s).

The update rule of mirror descent may be written

$$w' := \underset{v}{\operatorname{arg min}} \eta \langle \nabla f(w), v \rangle + D_{\Phi}(v, w).$$

Prove this is equivalent to

$$w'' := \nabla \Phi^* \left(\Phi(w) - p \nabla f(w) \right).$$

Hint: since Φ is strongly convex, then $(\nabla \Phi)^{-1}$ exists and is equal to $\nabla \Phi^*$ (you may use this without proof).

- (d) Suppose Q ∈ R^{dxd} is symmetric positive definite, let b ∈ R^d be arbitary, and define f(x) := ½x^TQx + b^Tx. Using direct computation (and not the preceding inverse gradient gradient fact), derive the Fenchel conjugate f*, and prove it is correct.
- (e) Now suppose Q ∈ R^{d×d} is merely symmetric positive semi-definite (it may fail to have an inverse), b∈ R^d is again arbitrary, and define f(x) := ½x^TQx + b^Tx. Derive the Fenchel conjugate f*, and prove it is correct.
- (f) Freedman's inequality (Bernstein's inequality for martingales) implies: given martingale difference sequence (Z_i)ⁿ_{i=1} with |Z_i| ≤ b and ∑_i E(Z²_i|Z_{≤i}) ≤ v, then with probability at least 1 − δ,

$$\sum_{i} Z_{i} \leq \sqrt{2v \ln(1/\delta)} + \frac{b \ln(1/\delta)}{3}.$$

Consider the setting of the theorem in Lecture 15, but additionally $\mathbb{E}(g_i^2|w_{i-1}) \leq \sigma^2$, and that for any given w_{i-1} it is possible to obtain an arbitrary number of mutually conditionally independent stochastic gradients g_i with all stated properties.

Use all these assumptions together with the above version of Freedman's inequality to provide a refinement of the theorem in Lecture 15.

(g) Consider the setting of the previous part, but suppose a minibatch of size b is used (b conditionally independent stochastic gradients are averaged together for each step). State the optimal values of step size η and batch size b by optimizing the right hand side of the previous bound.

Solution.

(Your solution here.)

(a) Let ℓ : R → R≥0 be a convex loss, and fix any distribution on (x, y); consider our familiar setting of risk minimization for linear functions, meaning f(w) := Eℓ(⟨w, -xy⟩). Show that given a random draw (x, y) and any q ∈ ∂ℓ(⟨w, -xy⟩), then E(-xyq) ∈ ∂f(w).

Remark: this problem justifies the choice of stochastic gradient descent used in practice.

Recall: the subgradient ∂h is defined as

$$\partial h(w) = \left\{ s \in \mathbb{R}^d : \forall v \in \mathbb{R}^d . h(v) \ge h(w) + \langle s, v - w \rangle \right\}.$$

(b) Suppose Φ : R^d → R is λ-strongly-convex (λ-sc) and differentiable, and define the Bregman divergence

$$D_{\Phi}(x, y) := \Phi(x) - \left(\Phi(y) + \left(\nabla \Phi(y), x - y\right)\right).$$

Prove that D_{Φ} is λ -sc in its first argument.

(Remark. What about the second argument? Does a weaker property hold?)

(c) Once again let Φ : R^d → R be λ-sc. Recall the definition of Fenchel conjugate Φ*(s) := sup_{x∈R^d} ⟨x, s⟩ − Φ(s).

The update rule of mirror descent may be written

$$w' := \arg \min \eta \langle \nabla f(w), v \rangle + D_{\Phi}(v, w)$$

Prove this is equivalent to

$$w'' := \nabla \Phi^* \left(\nabla \Phi(w) - \eta \nabla f(w) \right).$$

Hint: since Φ is strongly convex, then $(\nabla \Phi)^{-1}$ exists and is equal to $\nabla \Phi^*$ (you may use this without proof).

- (d) Suppose Q ∈ R^{d×d} is symmetric positive definite, let b ∈ R^d be arbitary, and define f(x) := ½x^TQx + b^Tx. Using direct computation (and not the preceding inverse gradient gradient fact), derive the Fenchel conjugate f*, and prove it is correct.
- (e) Now suppose Q ∈ R^{d×d} is merely symmetric positive semi-definite (it may fail to have an inverse), b ∈ R^d is again arbitrary, and define f(x) := ½x^TQx + b^Tx. Derive the Fenchel conjugate f*, and prove it is correct.
- (f) Freedman's inequality (Bernstein's inequality for martingales) implies: given martingale difference sequence (Z_i)ⁿ_{i−1} with |Z_i| ≤ b and ∑_i E(Z²_i|Z_{≤i}) ≤ v, then with probability at least 1 − δ,

$$\sum_{i} Z_{i} \leq \sqrt{2v \ln(1/\delta)} + \frac{b \ln(1/\delta)}{3}.$$

Consider the setting of the theorem in Lecture 15, but additionally $\mathbb{E}(\|\mathbf{g}_i - \mathbf{s}_i\|^2 \|\mathbf{w}_{i-1}) \leq \sigma^2$, and that for any given \mathbf{w}_{i-1} it is possible to obtain an arbitrary number of mutually conditionally independent stochastic gradients g_i with all stated properties.

Use all these assumptions together with the above version of Freedman's inequality to provide a refinement of the theorem in Lecture 15.

(g) Consider the setting of the previous part, but suppose a minibatch of size b is used (b conditionally independent stochastic gradients are averaged together for each step). State the optimal values of step size η and batch size b by optimizing the right hand side of the previous bound.

Solution.

(Your solution here.)